
34 CAN Newsletter 4/2019

Introduction of the open source project “OBD display” for the world of
Internet-of-Things (IoT) including an app.

Displaying vehicle information with Raspberry PI

configure and open CAN interface, forward received
CAN messages and send CAN messages (can_
device.c)

2. Monitor the connection and disconnection of the
Tiny-CAN interface (can_dev_pnp.c)

3. Driver for the ISO-TP protocol (isotp.c), sending of
single and segmented ISO-TP messages with data
flow control. Receive single and segmented ISO-TP
messages, including generated CAN messages for
data flow control

4. Establish OBD connection, read VIN and supported
PIDs, cyclically read the life data and read the error
memory, errors are not deleted.

The vin_db.c module contains utility functions for
breaking down the VIN in manufacturer, country, etc. The

Figure 1: OBD display interfaces (Source: MHS-Elektronik)

Via the OBD-II interface, measurement data (SID 01h),
vehicle information such as chassis number/vehicle

identification number (SID 09h) and fault memory
(diagnostic trouble codes, SID 03h are queried via a
CAN network. A list of all values that can be displayed is
shown in the appendix. A Tiny-CAN is used as an
interface adapter from the CAN network to the USB
network. By using a standard USB-CAN adapter, the
program can be used on any Linux PC. The software
is written in C. GTK+ is used as GUI (graphical user
interface). The graphic illustrates the functionality in a very
simplified way.

The program flow even more detailed:
1. Load CAN API driver libmhstcan.so, query

information about driver and Tiny-CAN hardware,

En
gi

ne
er

in
g

https://www.mhs-elektronik.de/index.php?module=download&action=list

35CAN Newsletter 4/2019

En
gi

ne
er

in
g

Value Mode PID

Supported PIDs in the range 01 - 20 01h 00h

Monitor status since DTCs cleared 01h 01h

Freeze DTC 01h 02h

Fuel system status 01h 03h

Calculated engine load 01h 04h

Engine coolant temperature 01h 05h

Short term fuel trim Bank 1 01h 06h

Long term fuel trim Bank 1 01h 07h

Short term fuel trim Bank 2 01h 08h

Long term fuel trim Bank 2 01h 09h

Fuel pressure (gauge pressure) 01h 0Ah

Intake manifold absolute pressure 01h 0Bh

Engine RPM 01h 0Ch

Vehicle speed 01h 0Dh

Timing advance 01h 0Eh

Intake air temperature 01h 0Fh

MAF air flow rate 01h 10h

Throttle position 01h 11h

Commanded secondary air status 01h 12h

Oxygen sensors present 01h 13h

Oxygen sensor 1 01h 14h

Oxygen sensor 2 01h 15h

Oxygen sensor 3 01h 16h

Oxygen sensor 4 01h 17h

Oxygen sensor 5 01h 18h

Oxygen sensor 6 01h 19h

Oxygen sensor 7 01h 1Ah

Oxygen sensor 8 01h 1Bh

OBD standards this vehicle conforms to 01h 1Ch

Oxygen sensors present in 4 banks 01h 1Dh

Auxiliary input status 01h 1Eh

Run time since engine start 01h 1Fh

Supported PIDs in the range 21 - 40 01h 20h

Distance traveled with malfunction
indicator lamp on

01h 21h

Fuel rail pressure (relative to mainfold
vacuum

01h 22h

Fuel rail gauge pressure (diesel, or
gasoline direct injection)

01h 23h

Oxygen sensor 1 01h 24h

Oxygen sensor 2 01h 25h

Oxygen sensor 3 01h 26h

Oxygen sensor 4 01h 27h

Oxygen sensor 5 01h 28h

Oxygen sensor 6 01h 29h

Value Mode PID

Oxygen sensor 7 01h 2Ah

Oxygen sensor 8 01h 2Bh

Commanded EGR 01h 2Ch

EGR error 01h 2Dh

Commanded evaporative purge 01h 2Eh

Fuel tank level input 01h 2Fh

Warm-ups since codes cleared 01h 30h

Distance traveled since codes cleared 01h 31h

Evaporative system vapor pressure 01h 32h

Absolute barometric pressure 01h 33h

Oxygen sensor 1 01h 34h

Oxygen sensor 2 01h 35h

Oxygen sensor 3 01h 36h

Oxygen sensor 4 01h 37h

Oxygen sensor 5 01h 38h

Oxygen sensor 6 01h 39h

Oxygen sensor 7 01h 3Ah

Oxygen sensor 8 01h 3Bh

Catalyst temperature, bank 1, sensor 1 01h 3Ch

Catalyst temperature, bank 2, sensor 1 01h 3Dh

Catalyst temperature, bank 1, sensor 2 01h 3Eh

Catalyst temperature, bank 2, sensor 2 01h 3Fh

Supported PIDs in the range 41 - 60 01h 40h

Monitor status this drive cycle 01h 41h

Control module voltage 01h 42h

Absolute load value 01h 43h

Fuel-air commanded equivalence
ratio

01h 44h

Relative throttle position 01h 45h

Ambient air temperature 01h 46h

Absolute throttle position B 01h 47h

Absolute throttle position C 01h 48h

Accelerator pedal position D 01h 49h

Accelerator pedal position E 01h 4Ah

Accelerator pedal position F 01h 4Bh

Commanded throttle actuator 01h 4Ch

Time run with MIL on 01h 4Dh

Time since trouble codes cleared 01h 4Eh

Get DTCs 01h 00h

Supported PIDs 01h 00h

VIN message count 01h 01h

Get VIN 01h 02h

ECU name message count 01h 09h

Get ECU name 01h 0Ah

Table: List of all values that can be displayed. The prerequisite, of course, is that the vehicle also provides the data. The
provided data is determined via supported PIDs

36 CAN Newsletter 4/2019

Author

Klaus Demlehner
MHS-Elektronik
info@mhs-elektronik.de
www.mhs-elektronik.de

Figure 2: Program flow chart (Source: MHS-Elektronik)

The app can also send commands to the software.
Here is an example of a command and its response:

{"command":"platform","unix_time":0,"bypass":
 false," bus":0,"enabled":false}\0

{"command_response": "platform", "message":
 "Tiny-CAN & Pi", "status": true}\0

The open source project is hosted on Github and is
licensed under the MIT license. The GIT project homepage
describes the compilation, the required hardware, and the
packages to be installed. Also the license text, numerous
useful tips, e.g. how to turn off the mouse pointer, and
some screenshots can be found there. The sources of
the libmhstcan.so (Tiny-CAN API) are included in the
Tiny-CAN software package and not part of the GIT
repository. t

manufacturer code is broken down using the wmi.db data-
base. The dtc_db.c module converts diagnostic trouble
codes into plain text. The error database dtc.db is loaded
for this purpose.

Without IoT (Internet-of-Things), nothing runs today.
The most important vehicle data is provided as HTML5
page via an Apache web server. A JSON over TCP/IP
interface is available for apps.

The xml_database.c cyclically writes the dashboard.
xml and status.xml files with the current measured values
via the XMLDatabaseUpdate function. Here is an excerpt
from the XML file:

<?xml version="1.0" encoding="utf-8"?>
<dashboard>
<Speed> 0</Speed>
<Rpm> 0</Rpm>
....
</dashboard>

Since the XML files are only simple static one-dimen-
sional structures, no XML library was used to write the files.
Instead g_strdup_printf and the standard file I/O functions
are used.

A Java script of the HTML page cyclically triggers
a GET request, which reads the corresponding XML file
according to the displayed page. The two modules sock_
lib.c und open_xc.c are responsible for TCP/IP commu-
nication. The sock_lib.c module creates its own thread in
which new socket connections and received data are pro-
cessed. The open_xc.c module also generates an auxil-
iary thread that triggers the cyclic transmission of the OBD
data. The used JSON message format is compatible to the
open source project Open XC of Ford Bug Labs, so the
Android, iOS libraries and apps of Open XC can be used.
As soon as an app opens the TCP/IP socket, the OBD
data is also transferred cyclically. Example of a data
record:

{"name": "vehicle_speed", "value": 45}\0

A data record is completed with \0. It is also possible
to send several data records in one package. Example:

{"name": ...}\0{"name": ...}\0

En
gi

ne
er

in
g

https://github.com/MHS-Elektronik/OBD-Display Tiny-CAN software package: https://www.mhs-elektronik.de/index.php? module=download&action=list

For details regarding sponsorship, please contact CiA offi ce:
Phone: +49-911-928819-22 • email: conferences@can-cia.org

Sponsors

Meet and discuss latestMeet and discuss latest
CAN-related solutions with CAN expertsCAN-related solutions with CAN experts

March 17 to 18, 2019March 17 to 18, 2019
Register at www.can-cia.org/iccRegister at www.can-cia.org/icc

https://www.can-cia.org/icc

	ad icc:

