Displaying vehicle information with Raspberry PI

Introduction of the open source project "OBD display" for the world of Internet-of-Things (IoT) including an app.

Figure 1: OBD display interfaces (Source: MHS-Elektronik)

Via the OBD-II interface, measurement data (SID 01_h), vehicle information such as chassis number/vehicle identification number (SID 09_h) and fault memory (diagnostic trouble codes, SID 03_h are queried via a CAN network. A list of all values that can be displayed is shown in the appendix. A Tiny-CAN is used as an interface adapter from the CAN network to the USB network. By using a standard USB-CAN adapter, the program can be used on any Linux PC. The software is written in C. GTK+ is used as GUI (graphical user interface). The graphic illustrates the functionality in a very simplified way.

The program flow even more detailed:

1. Load CAN API driver libmhstcan.so, query information about driver and Tiny-CAN hardware,

configure and open CAN interface, forward received CAN messages and send CAN messages (can_ device.c)

- 2. Monitor the connection and disconnection of the Tiny-CAN interface (can_dev_pnp.c)
- Driver for the ISO-TP protocol (isotp.c), sending of single and segmented ISO-TP messages with data flow control. Receive single and segmented ISO-TP messages, including generated CAN messages for data flow control
- 4. Establish OBD connection, read VIN and supported PIDs, cyclically read the life data and read the error memory, errors are not deleted.

The vin_db.c module contains utility functions for breaking down the VIN in manufacturer, country, etc. The \triangleright

Table: List of all values that can be displayed. The prerequisite, of course, is that the vehicle also provides the data. The provided data is determined via supported PIDs

Value	Mode	PID		Value		PID
Supported PIDs in the range 01 - 20	01 _h	00 _h Oxygen sensor 7		01 _h	2A _h	
Monitor status since DTCs cleared	01 _h	01 _h	1 [Oxygen sensor 8		2B _h
Freeze DTC	01 _h	02 _h] [Commanded EGR		2C _h
Fuel system status	01 _h	03 _h]	EGR error	01 _h	2D _h
Calculated engine load	01 _h	04 _h] [Commanded evaporative purge		2E _h
Engine coolant temperature	01 _h	05 _h	Fuel tank level input		01 _h	2F _h
Short term fuel trim Bank 1	01 _h	06 _h	06 _h Warm-ups since codes cleared		01 _h	30 _h
Long term fuel trim Bank 1	01 _h	07 _h	07 _h Distance traveled since codes cleared		01 _h	31 _h
Short term fuel trim Bank 2	01 _h	08 _h	Evaporative system vapor pressure		01 _h	32 _h
Long term fuel trim Bank 2	01 _h	09 _h		Absolute barometric pressure		33 _h
Fuel pressure (gauge pressure)	01 _h	$0A_{h}$		Oxygen sensor 1	01 _h	34 _h
Intake manifold absolute pressure	01 _h	$0B_{h}$		Oxygen sensor 2	01 _h	35 _h
Engine RPM	01 _h	$0C_{h}$		Oxygen sensor 3	01 _h	36 _h
Vehicle speed	01 _h	$0D_{h}$		Oxygen sensor 4	01 _h	37 _h
Timing advance	01 _h	0E _h		Oxygen sensor 5	01 _h	38 _h
Intake air temperature	01 _h	$0F_{h}$		Oxygen sensor 6	01 _h	39 _h
MAF air flow rate	01 _h	10 _h		Oxygen sensor 7	01 _h	3A _h
Throttle position	01 _h	11 _h		Oxygen sensor 8	01 _h	3B _h
Commanded secondary air status	01 _h	12 _h		Catalyst temperature, bank 1, sensor 1		3C _h
Oxygen sensors present	01 _h	13 _h		Catalyst temperature, bank 2, sensor 1		3D _h
Oxygen sensor 1	01 _h	14 _h		Catalyst temperature, bank 1, sensor 2		3E _h
Oxygen sensor 2	01 _h	15 _h	5 _h Catalyst temperature, bank 2, sensor 2		01 _h	3F _h
Oxygen sensor 3	01 _h	16 _h	Supported PIDs in the range 41 - 60		01 _h	40 _h
Oxygen sensor 4	01 _h	17 _h		Monitor status this drive cycle		41 _h
Oxygen sensor 5	01 _h	18 _h		Control module voltage	01 _h	42 _h
Oxygen sensor 6	01 _h	19 _h		Absolute load value	01 _h	43 _h
Oxygen sensor 7	01 _h	1A _h		Fuel-air commanded equivalence	01 _h	44 _h
Oxygen sensor 8	01 _h	1B _h		ratio	01	45
OBD standards this vehicle conforms to	01 _h	1Ch				45 _h
Oxygen sensors present in 4 banks	01 _h	1D _h	╡┝	Ambient air temperature		40 _h
Auxiliary input status	01 _h	1E _h		Absolute throttle position B		47 _h
Run time since engine start	01 _h	1F _h		Absolute throttle position C		48 _h
Supported PIDs in the range 21 - 40	01 _h	20 _h	╡╞	Accelerator pedal position D		49 _h
Distance traveled with malfunction indicator lamp on	01 _h	21 _h		Accelerator pedal position E	01 _h	4A _h 4B _h
Fuel rail pressure (relative to mainfold	01 _h	22 _h		Commanded throttle actuator	01 _h	4C _h
Fuel rail gauge pressure (diese) or		01 _h 23 _h		Time run with MIL on	01 _h	4D _h
gasoline direct injection)	01 _h			Time since trouble codes cleared	01 _h	4E _h
Oxygen sensor 1	01 _h	24 _h		Get DTCs	01 _h	00 _h
Oxygen sensor 2	01 _h	25 _h		Supported PIDs		00 _h
Oxygen sensor 3	01 _h	26 _h		VIN message count		01 _h
Oxygen sensor 4	01 _h	27 _h		Get VIN		02 _h
Oxygen sensor 5	01 _h	28 _h		ECU name message count	01 _h	09 _h
Oxygen sensor 6	01 _h	29 _h		Get ECU name		0A _h

Without IoT (Internet-of-Things), nothing runs today. The most important vehicle data is provided as HTML5 page via an Apache web server. A JSON over TCP/IP interface is available for apps.

The xml_database.c cyclically writes the dashboard. xml and status.xml files with the current measured values via the XMLDatabaseUpdate function. Here is an excerpt from the XML file:

```
<?xml version="1.0" encoding="utf-8"?>
<dashboard>
<Speed> 0</Speed>
<Rpm> 0</Rpm>
....
```

</dashboard>

Since the XML files are only simple static one-dimensional structures, no XML library was used to write the files. Instead g_strdup_printf and the standard file I/O functions are used.

A Java script of the HTML page cyclically triggers a GET request, which reads the corresponding XML file according to the displayed page. The two modules sock_ lib.c und open_xc.c are responsible for TCP/IP communication. The sock_lib.c module creates its own thread in which new socket connections and received data are processed. The open_xc.c module also generates an auxiliary thread that triggers the cyclic transmission of the OBD data. The used JSON message format is compatible to the open source project Open XC of Ford Bug Labs, so the Android, iOS libraries and apps of Open XC can be used. As soon as an app opens the TCP/IP socket, the OBD data is also transferred cyclically. Example of a data record:

{"name": "vehicle_speed", "value": 45}\0

A data record is completed with \0. It is also possible to send several data records in one package. Example:

{"name": ...}\0{"name": ...}\0

The app can also send commands to the software. Here is an example of a command and its response:

{"command":"platform","unix_time":0,"bypass": false," bus":0,"enabled":false}\0 {"command_response": "platform", "message": "Tiny-CAN & Pi", "status": true}\0

The open source project is hosted on Github and is licensed under the MIT license. The GIT project homepage describes the compilation, the required hardware, and the packages to be installed. Also the license text, numerous useful tips, e.g. how to turn off the mouse pointer, and some screenshots can be found there. The sources of the libmhstcan.so (Tiny-CAN API) are included in the Tiny-CAN software package and not part of the GIT repository.

Author

Klaus Demlehner MHS-Elektronik info@mhs-elektronik.de www.mhs-elektronik.de

	Tuesday,	March 17, 2020	wednesday, March 18, 2020					
09:30 - 09:45	Holger Zeltwanger (CiA)	Conference opening	Session V: CAN FD lower layers Chairperson: Dr. Frank Deicke (Fraunhofer IPMS)					
Keynote session								
09:45 - 11:00	Carsten Schanze (VW)	Future of CAN from the prospective of an OEM	09:00 - 09:30	Iony Adamson (NXP)	5-Mbit/s networks			
Section I: Physical layer		19:30 - 10:00	Fred Rennig (ST Microelectronics)	A lightweight communication bus based				
Chairperson: Carsten Schanze (VW)				on CAN FD for data exchange with small monolithic actuators and sensors				
11:00 - 11:30	Magnus-Maria Hell (Infineon)	The physical layer in the CAN XL world	10:00 - 10:30	Kent Lennartsson (Kvaser)	Improved CAN-driver			
11:30 - 12:00	Patrick Isensee	The challenge of future 10-Mbit/s in-vehicle	10:30 - 11:00	Co	offee break			
	(C&S Group)	networks	Session VI: Engineering					
12:00 - 12:30	12:30 Johnnie Hancock (Keysight) Characterizing the physical layer of CAN FD		Chairperson	Chairperson: Kent Lennartsson (Kvaser)				
12:30 - 14:00		Lunch break	11:00 - 11:30	Nikos Zervas (Cast)	Designing a CAN-to-TSN Ethernet gateway			
Session II: CAN XL data link layer		11.30 - 12.00	Dr. Hoikki Coho (TKE)	Automated workflow for apparation of				
Chairperson	rperson: Reiner Zitzmann (CiA)		11.30 - 12.00	DI. Heikki Sana (TKE)	CANopen system monitoring graphical			
14:00 - 14:30	Florian Hartwich (Robert Bosch)	Introducing CAN XL into CAN networks			user interface (GUI)			
14:30 - 15:00	Dr. Arthur Mutter (Robert Bosch)	CAN XL error detection capabilities	12:00 - 12:30	Dr. Christopher Quigley (Warwick)	Benchmarking of CAN systems using the physical layer – car, truck, and, marine case studies			
15:00 - 15:30	Dr. Christian Senger (University of Stuttgart)	CRC error detection for CAN XL	12:30 - 14:00	Lu	inch break			
		Session VII: Security						
15:30 - 16:00		Coffee break	Chairperson	: Torsten Gedenk (Emotas)				
Session III: C Chairperson:	CANopen testing : Uwe Koppe (Microcontrol)		14:00 - 14:30	Thilo Schumann (CiA)	Embedded security recap			
16:00 - 16:30	Mark Schwager (Vector)	A new approach for simulating and testing of CANopen devices	14:30 - 15:00	Prof. Dr. Axel Sikora (Hochschule Offenburg), Georg Olma (NXP), Olaf Pfeiffer (Emsa)	Achieving multi-level CAN (FD) security by complementing available technologies			
16:30 - 17:00	Oskar Kaplun (CiA)	CANopen FD conformance testing - today and tomorrow	15:00 - 15:30	Vivin Richards, Allimuthu Elavarasu (Infineon)	CAN XL made secure			
Session IV: CANopen FD		15:30 - 16:00	Ca	offee break				
Chairperson: Christian Schlegel		Session VIII-	CAN XI higher lavere					
17:00 - 17:30	Uwe Wilhelm (Peak), Christian Keydel (Emsa)	A simplified classic CANopen-to-CANopen FD migration path using smart bridges	Chairperson	Dr. Arthur Mutter (Robert Bosch)				
17:30 - 18:00	Alexander Philipp (Emotes)	A theoretical approach for node-ID negotiation	16:00 - 16:30	Peter Decker (Vector)	IP concepts on CAN XL			
11.00 10.00	(Enotas)	in CANopen networks	16:30 - 17:00	Holger Zeltwanger (CiA)	Multi-PDU concept for heterogeneous backbone networks			
18:00 - 18:30	Yao Yao (CiA)	CANopen FD devices identification via new layer setting services (LSS)						

For details regarding sponsorship, please contact CiA office: Phone: +49-911-928819-22 • email: conferences@can-cia.org

