S0
S
A
O
Q
S
=)

3

Displaying vehicle information with Raspberry PI

Introduction of the open source project “OBD display” for the world of

Internet-of-Things (loT) including an app.

OBD Display
Beschreibung: Tiny-CAN API Treiber
Trelber Version: 5.02

£ Tiny-CAN Status
Verbindung zum Tiny-CAN hergestellt
Hardware: TINY-CAN I-XL
Seriennummer: 01000036
Firmware Version: 1.650

?, Automatische Baudratenerkennung

.4/ oBD
V Verbindung hergestellt
Hersteller: Audi
Region / Land: Europe / Germany
Baureihe, Motortyp & Ausstattung: ZZZ8E7
Herstellerwerk: A
Modelljahr;====
Seriennummer;

OBD Display x | =
ECU Name; -

)= Gy (@ 192.168.1.30

OBD Display 1.00

Dashboard

Raspberry Pi

GitHub

[272] d 500 kBit/s erfolgreich dedekti t, 10 CAN Nachrichten erfolgreich empfangen

OBD Display - Mozilla Firefox

< Wl

OpenXC Enable

Figure 1: OBD display interfaces (Source: MHS-Elektronik)

Via the OBD-Il interface, measurement data (SID 01,),
vehicle information such as chassis number/vehicle
identification number (SID 09,) and fault memory
(diagnostic trouble codes, SID 03, are queried via a
CAN network. A list of all values that can be displayed is
shown in the appendix. A Tiny-CAN is used as an
interface adapter from the CAN network to the USB
network. By using a standard USB-CAN adapter, the
program can be used on any Linux PC. The software
is written in C. GTK+ is used as GUI (graphical user
interface). The graphic illustrates the functionality in a very
simplified way.
The program flow even more detailed:
1. Load CAN API driver libmhstcan.so, query
information about driver and Tiny-CAN hardware,

configure and open CAN interface, forward received
CAN messages and send CAN messages (can_
device.c)

2. Monitor the connection and disconnection of the
Tiny-CAN interface (can_dev_pnp.c)

3. Driver for the ISO-TP protocol (isotp.c), sending of
single and segmented ISO-TP messages with data
flow control. Receive single and segmented ISO-TP
messages, including generated CAN messages for
data flow control

4. Establish OBD connection, read VIN and supported
PIDs, cyclically read the life data and read the error
memory, errors are not deleted.

The vin_db.c module contains utility functions for
breaking down the VIN in manufacturer, country, etc. The

34

https://www.mhs-elektronik.de/index.php?module=download&action=list

Table: List of all values that can be displayed. The prerequisite, of course, is that the vehicle also provides the data. The
provided data is determined via supported PIDs

Value Mode | PID Value Mode | PID
Supported PIDs in the range 01 - 20 01y 004 Oxygen sensor 7 01y 2A,
Monitor status since DTCs cleared 01, 01n Oxygen sensor 8 01, 2B,
Freeze DTC 01n 02, Commanded EGR 01 2C,
Fuel system status 01y 03, EGR error 01y 2Dy,
Calculated engine load 01, 04, Commanded evaporative purge 01y 2E,
Engine coolant temperature 01, 05y Fuel tank level input 01 2Fh,
Short term fuel trim Bank 1 01, 06, Warm-ups since codes cleared 01y 30,
Long term fuel trim Bank 1 01n 07x Distance traveled since codes cleared 01n 31n
Short term fuel trim Bank 2 01 08, Evaporative system vapor pressure 01 32,
Long term fuel trim Bank 2 (O 09 Absolute barometric pressure 01n 33
Fuel pressure (gauge pressure) 01, 0A: Oxygen sensor 1 01n 344,
Intake manifold absolute pressure 01y, 0Bx Oxygen sensor 2 01, 35h
Engine RPM 01, 0Cy, Oxygen sensor 3 01, 36n
Vehicle speed 01y, 0Dy, Oxygen sensor 4 01, 37h
Timing advance 01 (0= Oxygen sensor 5 01n 38n
Intake air temperature 01y OF;, Oxygen sensor 6 01y 39,
MAF air flow rate 01, 10, Oxygen sensor 7 01, 3A,
Throttle position 01y, 11, Oxygen sensor 8 01y 3Bn
Commanded secondary air status 01y 124 Catalyst temperature, bank 1, sensor1 | 01, | 3C,
Oxygen sensors present 01y 13 Catalyst temperature, bank 2, sensor 1 01y 3Ds
Oxygen sensor 1 01n 14, Catalyst temperature, bank 1, sensor 2 01, 3En
Oxygen sensor 2 01n 15y Catalyst temperature, bank 2, sensor2 | 01 3F,
Oxygen sensor 3 01n 164 Supported PIDs in the range 41 - 60 01, 40,
Oxygen sensor 4 01n 17h Monitor status this drive cycle 01n 41,
Oxygen sensor 5 01y 18h Control module voltage 01 42y,
Oxygen sensor 6 01n 19, Absolute load value 01 43,
Oxygen sensor 7 01n 1A, Fugl-air commanded equivalence 01, 44,
Oxygen sensor 8 01y 1By, ratio

OBD standards this vehicle conforms to | 01, 1C, Relative throttle position Ot 45n
Oxygen sensors present in 4 banks 01 1Dy, Ambient air temperature Otn 46n
Auxiliary input status 01, 1E, Absolute throttle position B 01 47,
Run time since engine start 01, 1F, Absolute throttle position C 01n 48
Supported PIDs in the range 21 -40 | 01, | 20, Accelerator pedal position D Ofh | 4%
Distance traveled with malfunction o, 21, Accelerator pedal pos?t?on E Ofh | 4As
indicator lamp on Accelerator pedal position F 01y 4B,
S:SLL?: pressure (relative to mainfold |, 22, Commanded throttle actuator 01, | 4Cs
Fuel rail gauge pressure (diesel, or 01 03 Time run with MIL on oy 4Dn
gasoline direct injection) h h Time since trouble codes cleared 01, 4E,
Oxygen sensor 1 01 24, Get DTCs 01 00n
Oxygen sensor 2 01 25y, Supported PIDs 01n 00n
Oxygen sensor 3 01 261 VIN message count 01n 01n
Oxygen sensor 4 01 27 Get VIN 01 02,
Oxygen sensor 5 01 28 ECU name message count 01 09
Oxygen sensor 6 01 29 Get ECU name 01n 0A:

gineering

En

35

gineering

En

Figure 2: Program flow chart (Source: MHS-Elektronik)

manufacturer code is broken down using the wmi.db data-
base. The dtc_db.c module converts diagnostic trouble
codes into plain text. The error database dtc.db is loaded
for this purpose.

Without loT (Internet-of-Things), nothing runs today.
The most important vehicle data is provided as HTML5
page via an Apache web server. A JSON over TCP/IP
interface is available for apps.

The xml_database.c cyclically writes the dashboard.
xml and status.xml files with the current measured values
via the XMLDatabaseUpdate function. Here is an excerpt
from the XML file:

<?xml version="1.0" encoding="utf-8"?>
<dashboard>

<Speed> 0</Speed>

<Rpm> 0</Rpm>

</dashboard>

Since the XML files are only simple static one-dimen-
sional structures, no XML library was used to write the files.
Instead g_strdup_printf and the standard file I/O functions
are used.

A Java script of the HTML page cyclically triggers
a GET request, which reads the corresponding XML file
according to the displayed page. The two modules sock_
lib.c und open_xc.c are responsible for TCP/IP commu-
nication. The sock_lib.c module creates its own thread in
which new socket connections and received data are pro-
cessed. The open_xc.c module also generates an auxil-
iary thread that triggers the cyclic transmission of the OBD
data. The used JSON message format is compatible to the
open source project Open XC of Ford Bug Labs, so the
Android, iOS libraries and apps of Open XC can be used.
As soon as an app opens the TCP/IP socket, the OBD
data is also transferred cyclically. Example of a data
record:

The app can also send commands to the software.
Here is an example of a command and its response:

{"command":"platform","unix_time":0,"bypass":
false," bus":0,"enabled":false}\0
{"command_response": "platform", "message":

{"name": "vehicle_speed", "value": 45)\0

A data record is completed with \0. It is also possible
to send several data records in one package. Example:

{"name": .. \0{"name": ..\O

"Tiny-CAN & Pi", "status": true\O

The open source project is hosted on Github and is
licensed under the MIT license. The GIT project homepage
describes the compilation, the required hardware, and the
packages to be installed. Also the license text, numerous
useful tips, e.g. how to turn off the mouse pointer, and
some screenshots can be found there. The sources of
the libmhstcan.so (Tiny-CAN API) are included in the
Tiny-CAN software package and not part of the GIT
repository. <4

Author

Klaus Demlehner
MHS-Elektronik
info@mhs-elektronik.de
www.mhs-elektronik.de

36 CAN Newsletter 4/2019

https://github.com/MHS-Elektronik/OBD-Display Tiny-CAN software package: https://www.mhs-elektronik.de/index.php? module=download&action=list

T

CAN Conference

1CC

BADEN

BADEN

GRESSHAUS

Reglster at www. can -cia. orgf cc i :

bbb s

Tuesday, March 17, 2020

09:30 - 09:45 Holger Zeltwanger (CiA)

Keynote session
Chairperson: Holger Zeltwanger (CiA)

09:45 - 11:00 Carsten Schanze (VW)

Session I: Physical layer
Chairperson: Carsten Schanze (VW)

11:00 - 11:30 Magnus-Maria Hell
(Infineon)

11:30 - 12:00 Patrick Isensee
(C&S Group)

12:00 - 12:30 Johnnie Hancock (Keysight)
12:30 - 14:00

Session Il: CAN XL data link layer
Chairperson: Reiner Zitzmann (CiA)

14:00 - 14:30 Florian Hartwich

(Robert Bosch)

14:30 - 15:00 Dr. Arthur Mutter

(Robert Bosch)

15:00 - 15:30 Dr. Christian Senger

(University of Stuttgart)
15:30 - 16:00

Session lll: CANopen testing
Chairperson: Uwe Koppe (Microcontrol)

16:00 - 16:30 Mark Schwager (Vector)

16:30 - 17:00 Oskar Kaplun (CiA)

Session IV: CANopen FD
Chairperson: Christian Schlegel

17:00 - 17:30 Uwe Wilhelm (Peak),
Christian Keydel (Emsa)

17:30 - 18:00 Alexander Philipp (Emotas)

18:00 - 18:30 Yao Yao (CiA)

Conference opening

Future of CAN from the prospective of an OEM

The physical layer in the CAN XL world

The challenge of future 10-Mbit/s in-vehicle
networks

Characterizing the physical layer of CAN FD

Lunch break

Introducing CAN XL into CAN networks

CAN XL error detection capabilities

CRC error detection for CAN XL

Coffee break

A new approach for simulating and testing of
CANopen devices

CANopen FD conformance testing — today and
tomorrow

A simplified classic CANopen-to-CANopen FD
migration path using smart bridges

A theoretical approach for node-ID negotiation
in CANopen networks

CANopen FD devices identification via new
layer setting services (LSS)

Wednesday, March 18, 2020

Session V: CAN FD lower layers

Chairperson: Dr. Frank Deicke (Fraunhofer IPMS)

09:00 - 09:30 Tony Adamson (NXP)

19:30 - 10:00 Fred Rennig (ST Microelectronics)

10:00 - 10:30 Kent Lennartsson (Kvaser)
10:30 - 11:00

Session VI: Engineering
Chairperson: Kent Lennartsson (Kvaser)

11:00 - 11:30 Nikos Zervas (Cast)

11:30 - 12:00 Dr. Heikki Saha (TKE)

12:00 - 12:30 Dr. Christopher Quigley (Warwick)

12:30 - 14.00

Session VII: Security
Chairperson: Torsten Gedenk (Emotas)

14:00 - 14:30 Thilo Schumann (CiA)

14:30 - 15:00 Prof. Dr. Axel Sikora (Hochschule
Oftenburg), Georg Olma (NXP),

Olaf Pfeiffer (Emsa)

15:00 - 15:30 Vivin Richards, Allimuthu

Elavarasu (Infineon)
15:30 - 16:00

Session VIII: CAN XL higher layers

Chairperson: Dr. Arthur Mutter (Robert Bosch)

16:00 - 16:30 Peter Decker (Vector)

16:30 - 17:00 Holger Zeltwanger (CiA)

CAN signal improvement and designing
5-Mbit/s networks

A lightweight communication bus based
on CAN FD for data exchange with small
monolithic actuators and sensors

Improved CAN-driver

Coffee break

Designing a CAN-to-TSN Ethernet
gateway

Automated workflow for generation of
CANopen system monitoring graphical
user interface (GUI)

Benchmarking of CAN systems using the
physical layer — car, truck, and, marine
case studies

Lunch break

Embedded security recap

Achieving multi-level CAN (FD) security
by complementing available technologies

CAN XL made secure

Coffee break

IP concepts on CAN XL

Multi-PDU concept for heterogeneous
backbone networks

For details regarding sponsorship, please contact CiA office:
Phone: +49-911-928819-22 + email: conferences @can-cia.org

e'otas

Sponsors

GEMAC

embedded
communication

VECTOR >

System

https://www.can-cia.org/icc

	ad icc:

