
10 CAN Newsletter 4/2021

The Janus attack is a low-level CAN protocol attack where a single CAN frame
contains two different payload contents.

The Janus attack

With the Janus Attack, a targeted device sees a dif-
ferent payload than other devices. This attack could

be used to transmit a frame to evade an intrusion detec-
tion system (IDS), or it could put two different actuators
into inconsistent states (e.g. moving a pair of motors in dif-
ferent directions). It breaks the atomic multicast feature
of CAN (where every device sees the same frame) - an
important property that lots of systems rely on (often
implicitly).

The attack works by exploiting the CAN protocol syn-
chronization rules and targets devices that have different
sample points. The CAN specification defines the follow-
ing rules:
a)	Only one synchronization within one bit-time (between

two sample points) shall be allowed. After an edge was
detected, synchronizations shall be disabled until the
next time the bus state, detected at the sample point, is
recessive.

b)	An edge shall cause synchroniza-
tion only if the bus state detected
at the previous sample point (pre-
vious read bus state) was reces-
sive.

The attack can be mounted
purely in software that takes control
of the GPIO port connected to the
CAN Tx pin of a CAN transceiver, so
a hijacked device using a remote
code execution vulnerability could
be used to mount the attack.

In a demonstration video of the
attack, two CANPico boards (that
contain the Microchip MCP2517/18FD
CAN controller) are attacked by a
CANHack board. The latter is a cut-
down version of the CANPico that
does not have a CAN controller,
neatly proving that the attack can

be mounted in pure software. The
logic analyzer is running the Sigrok
Pulseview CAN2 protocol decoder
to show how the Janus signal is
decoded into a CAN frame.

How does the attack
work?

The attack forces CAN controllers
to synchronize at the same time and then changes the
CAN bus level after one controller has sampled the bus
but before another. The bit sequences are set so that each
device sees a valid frame, but the frames can have differ-
ent payloads. The logic analyzer trace (Figure 1) shows
how a Janus frame is made up of many more transitions
than CAN bits but that form a valid CAN frame.

There are two restrictions on the bit sequences.
First, the first and second CAN frame have to have
the same length, so there must be the same number
of stuff bits. The CANHack tool kit has a function to
show the bit patterns of both halves of a Janus frame
(Figure 2).

Second, if the Janus bit is 10 (i.e. the first sampled
value in a CAN bit is a 1 but the second sampled value is
a 0) then all controllers have to see the same subsequent
bits (00 or 11) until they are brought back into sync (which
happens after a 11).

Figure 1: Logic analyzer trace of a Janus frame (Source: Canis Automotive Labs)

Figure 2: Setup of the two CANPico boards and the CANHack board in the
middle. The CANHack tool kit has a function to show the bit patterns of both
halves of a Janus frame. (Source: Canis Automotive Labs)

Lo
w

er
 la

ye
rs

https://www.youtube.com/watch?v=0vYWkH-Rf3g&t=206s
https://kentindell.github.io/canpico
https://kentindell.github.io/2021/02/06/canhack-pico/
https://kentindell.github.io/can2

There is a Janus bitstream test function called
is_janus() included in the latest version of the Python
CAN frame tool in the CANHack repository, plus a simple
brute force algorithm to look for Janus payloads (no doubt,
other smarter algorithms exist as well). This can be used to
create CAN frames to show how the attack works. It would
also be possible to attack devices with sample points that
were more similar if the CANHack toolkit would use the
output-compare-timer hardware present in most micro-
controllers to make the CAN Tx transitions more accu-
rately. But the goal with the CANHack toolkit is not to make
it easy to attack a CAN bus but to prove that there is vulner-
ability that must be defended against.

How to defend against Janus attack?

Firstly, an intrusion detection system (IDS) with dedicated
hardware should be used to detect these transitions. An
IDS that uses a conventional CAN controller cannot detect
this (it also cannot detect many other CAN protocol attacks).
Secondly, devices should have sample points set as close
to each other as possible: Ideally, this would be a part of
an acceptance test when integrating devices together on
to a CAN network. There are other protections too. Using
the CAN-HG Bus Guardian hardware prevents a Janus
frame from being sent and allows an IDS to shut down an
attack. Protecting a payload with a cryptographic message
authentication code (MAC) makes it much harder for an
attacker to find a valid Janus payload, even if the attacker
has the ability to sign messages with the necessary shared
cryptographic key. t

The CANPico firmware has been updated to the lat-
est release of Micropython v. 1.16. The update fixes
some bugs and adds robustness to SPI (serial periph-
eral interface) noise (for example, if SPI pins acciden-
tally pick up noises from logic analyzer probes where
the logic analyzer is not grounded). Thus, corrupted
values could be written to or read from the CAN con-
troller. The firmware keeps counters for the number
of corrupted values with a new method get_diagnos-
tics().

The documentation has been updated to reflect
this API (application programming interface) call.
There is also a new version of the canpico.py file of
example functions that are useful when trying out dif-
ferent things on the CANPico board. This file can be
copied to the CANPico board using the rshell utility.

Updated CANPico firmware released

Author

Ken Tindell
Canis Automotive Labs
ken@canislabs.com
canislabs.com

mailto:ken@canislabs.com
http://canislabs.com
https://www.ixxat.com/products/products-industrial/can-interfaces
https://github.com/kentindell/canhack/blob/master/src/canframe.py

