
28 CAN Newsletter 4/2022

CryptoCAN by Canis Automotive Labs is an encryption scheme for CAN frames. It
is designed to meet the requirements of in-vehicle CAN messaging. For example,
publish/subscribe communications.

CAN was created in the mid-1980s to provide a robust
atomic broadcast system to connect ECUs (electronic

control unit) in passenger cars to replace individual signal-
ing wires and has become a proven technology in applica-
tions as diverse as yachts and spacecraft. But CAN was never
designed with security in mind – in the mid-1980s there was no
notion of embedded systems being connected to the internet.
Today the world is very different and there is a need to secure
CAN communications because systems built with CAN are
cyber-physical systems: there are actuators that move things
in the real world based on the contents of CAN frames.

In mainstream computing a common way to secure com-
munications is to use cryptography: to keep secret the con-
tents of messages and to ensure messages have not been
tampered with. This can be done for CAN systems too, but
there are special requirements for CAN.

Special requirements for CAN cryptographic
schemes

 ◆ CAN is a broadcast network that embodies a publish-
subscribe model: messages containing sensor and
status information are published periodically and the
sender generally doesn’t know about the receivers.
The cryptographic scheme must not require 1:1
communication.

 ◆ CAN is a real-time control network. The cryptographic
scheme must result in messages that have bounded
latencies.

 ◆ CAN frames are very small by computing standards:
just 8-byte payloads. The cryptographic scheme must
fit with this limited size.

 ◆ CAN systems are usually built from constrained
embedded hardware. The cryptographic scheme must
work on micro-controllers with limited resources.

 ◆ CAN connected devices going through a watchdog
reset must return to normal operation quickly to
resume control of a piece of physical hardware.
The cryptographic scheme must support fast start
communications.

The CryptoCAN scheme of Canis Labs is designed
to meet all these requirements. CryptoCAN is currently

Securing CAN: Introduction to CryptoCAN

being evaluated by the United States Army Combat Capa-
bilities Development Command (DEVCOM) Ground Vehi-
cle Systems Center (GVSC) in the cooperative research
and development Agreement “Cyber Security for Military
Ground Vehicles Architectures”.

In the confidentiality integrity availability (CIA) model
of communications security, CryptoCAN can provide
confidentiality (i.e. keep the messages secret) and
integrity (i.e. ensure messages came from a legitimate
sender).

No cryptographic scheme for CAN ensures availabil-
ity: attacks such as bus flooding and the bus-off attack
(where a targeted device is driven offline by CAN errors)
can prevent communications from taking place (just as a
physical attacker can prevent communications simply by
cutting the bus).

Basic CryptoCAN messaging

CryptoCAN takes a classical CAN frame (the plaintext
frame) and converts it into a CryptoCAN message (the
ciphertext message) that is sent on CAN then converted
back into the original plaintext CAN frame by each receiver
(Figure 1). A CryptoCAN message is 128 bit long and
contains:

 ◆ The original frame payload (up to 64 bit)
 ◆ The original frame DLC (data length code, 4 bit)
 ◆ A message authentication code (MAC) of 60 bit

A MAC is a bit like a CRC (cyclic redundancy check) but
much bigger and practically impossible to forge. CryptoCAN
uses the standard AES-CMAC (advanced encryption stan-
dard - cipher message authentication code) algorithm to pro-
duce the MAC.

The message is encrypted using the standard AES-128
algorithm and the cipher feedback (CFB) mode. The result is
a 128-bit ciphertext block. This is split into two pieces and put
into two 64-bit (8 byte) CAN frames: Frame A and Frame B.

The CAN-ID (identifier) for the pair of frames is the
plaintext CAN frame’s ID with one bit of the ID used as
the B Flag: this is 0 for Frame A and 1 for Frame B. The
flag is there to ensure that the receiver can reassemble the
pair of frames back into the CryptoCAN message before

Figure 1: How CryptoCAN encodes and decodes a plaintext CAN frame (Source: Canis Automotive Labs)

Se
cu

rit
y

ASIL D
ISO 26262

decoding. Under the CAN protocol arbitration rules, Frame
A is a higher priority than Frame B and is always sent
on the network ahead of Frame B. In a J1939 system the
lowest bit of the priority field (bit 26) could be used. In a
CANopen system, one of the address bits could be used.

CryptoCAN implementation

The cryptographic algorithms used are the ones provided
by a particular hardware security module (HSM): the secure

hardware extensions (SHE)
HSM defined by the automo-
tive industry. The SHE HSM
standard specifies the AES-
128 algorithm (for encrypting
blocks of data) and the AES-
CMAC algorithm for creating
and verifying a MAC. The
standard also defines how
keys are managed: they are
stored in secure non-vola-
tile memory (in a dedicated
area of memory that is not
directly accessible by the
application software), there
is a defined protocol for pro-
gramming them, and keys
have defined permissions:
they can be used for encryp-

tion/decryption or for MAC creation/verification. CryptoCAN
uses the SHE HSM functions for encryption and MAC gener-
ation and verification (the keys are programmed into the HSM
as part of provisioning a device).

Not all embedded micro-controllers have an SHE HSM:
some have AES-128 accelerators, some have true random
number generators (TRNG) and some have no cryptographic
hardware. To allow CAN devices using these micro-
controllers to participate in secure communications, Crypto-
CAN has a layered architecture (see Figures 2 to 4).

Figure 2: CryptoCAN on
a micro-controller with an
SHE HSM (Source: Canis
Automotive Labs)

Figure 3: CryptoCAN on a
micro-controller with AES
accelerator hardware (Source:
Canis Automotive Labs)

Figure 4: CryptoCAN on a
micro-controller with no cryp-
tographic hardware (Source:
Canis Automotive Labs)

https://www.cast-inc.com/interfaces/automotive-bus-controllers

30 CAN Newsletter 4/2022

In the first situation (Figure 2), the CryptoCAN mes-
saging software uses SHE HSM hardware. The application
accesses the HSM for key management functions (setting
and updating key values).

In the second situation (Figure 3), CryptoCAN is run-
ning on a micro-controller without an HSM but with an
AES-128 accelerator. In this case the CryptoCAN software
includes an SHE HSM emulator that uses the AES-128
accelerator hardware via a driver API (application pro-
gramming interface) and to access target-specific non-vol-
atile memory storage (typically on-chip flash or EEPROM)
to store keys.

In the third situation (Figure 4), CryptoCAN software
is running on a micro-controller with-out any crypto-
graphic hardware. There is a software emulation of an SHE
HSM with a software implementation of AES-128.

A pure software implementation allows CryptoCAN
to run on a wide range of CAN-connected devices. The
AES-128 encrypt operation is the most compute-intensive
part of CryptoCAN, and on the RP2040 micro-controller
(used in the Canis Labs CANPico board) it takes approxi-
mately 13 µs. The creation of a CryptoCAN frame requires
two AES-128 encrypt operations and the decode of Frame
A and Frame B, each requires one. The RP2040 micro-con-
troller uses execute-in-place (XIP) external flash and there
can be very large cache fetch delays for cache misses. Cryp-
tographic operations must have constant execution time
so the cryptographic functions in the RP2040 implemen-
tation of CryptoCAN are placed in RAM (random access
memory).

CryptoCAN MAC

The CryptoCAN MAC is computed by using the AES-CMAC
algorithm on 128 bits of data that both the sender and
receiver are expected to know: 29 bits containing the CAN-
ID (the ID with the B Flag removed, but with 1 bit set for stan-
dard/extended), 4 bits containing the plaintext CAN-frame
DLC, 64 bits containing the plaintext CAN frame payload
(padded if less than 8 bytes), and a 31-bit freshness value:
an application-specific value representing when the frame
was created (it could be a time or sequence number).

When the receiver decodes a CryptoCAN message, it
computes the MAC from these same known values. If the
received MAC and the computing MAC do not match exactly
then the message is rejected.

The MAC will detect any tampering with a message.
For example, if the payload is attached to a different CAN
frame ID, then the receiver will not compute the same MAC
as transmitted. Similarly, a message will be rejected if the
payload is altered.

One common attack on encryption systems is a replay
attack: old messages are copied and then replayed later.
An attacker may not know the contents of the message but
can guess from context (for example, a message may result
in a door being unlocked and therefore the message con-
tains an “unlock door” command) and they can keep cop-
ies of messages with known behaviors to replay them later.
These messages are genuine (because they were created
by the legitimate sender) but are not valid - because they
are out-of-date. This is why CryptoCAN has a freshness

value included in the MAC: after this value changes, previ-
ous messages will no longer verify.

The freshness value is controlled at the application
level: it can be a shared global time kept in a real-time
clock on each device, or it can be a sequence number
incremented each time a message is sent. It could also be
partitioned so that the upper bits reflect an operating cycle
count, stored in EEPROM in each device.

One problem with obtaining the freshness value from
a timer is that a message may be created at time t but be
received by the receiver at time t + L, where L is the latency
of Frame B. The freshness value at the receiver is there-
fore not the same as the one used to create the message,
and the MAC verification would normally fail. To address
this issue, CryptoCAN has an option to use the least signif-
icant 3 bits of the CAN DLC fields of Frame A and Frame B
to encode the least significant 6 bits of the freshness value
used to create the frames. CryptoCAN at the receiver uses
these 6 bits to work out the original freshness value, deter-
mine if it is fresh, and then verifies the MAC against it.

CryptoCAN contexts

CryptoCAN creates a context for each message source:
this stores data to encode and decode CryptoCAN mes-
sages, including key numbers of the encryption and MAC
keys, the bit number of the B Flag, and the previous Cryp-
toCAN message ciphertext (i.e., the payloads of Frame A
and Frame B). The previous ciphertext is used by the CFB
mode of encryption (a mode that allows a receiver to start
receiving messages very quickly after starting or re-start-
ing) but when a context is initialized, the previous cipher-
text is unknown and set to a random value. This results
in an important CryptoCAN property: the first CryptoCAN
message after initialization will always be rejected. For a
periodic message this is usually not a problem. But it could
be a problem for a sporadic message: there may be no pre-
vious ciphertext. In this case, a simple solution is to send
the message twice.

Development support

CryptoCAN software is supplied as source code with a C
API. Also provided is a Micropython API to CryptoCAN in
firmware for the Canis Labs CANpico hardware. This uses
an RP2040 micro-controller without any cryptographic

Figure 5: Interactive Micropython session on two CANpico
boards (Source: Canis Automotive Labs)

Se
cu

rit
y

hardware so the software emulation of a SHE HSM is
included, with keys stored in external flash memory. This is
of course not resilient to physical attacks (where the flash
memory is de-soldered and the keys read out) but is pri-
marily intended to be used as an evaluation kit for Cryp-
toCAN. Figure 5 shows a simple interactive Micropython
session on two CANpico boards, creating and sending
encrypted CAN frames (left) and receiving and decoding
them (right). The HSM on each of the CANpico boards has
been pre-provisioned with the encryption and authentica-
tion keys. Note how the first CryptoCAN message is dis-
carded.

There is further development support built into
CryptoCAN: an option to disapply the encryption of
CryptoCAN messages so that they are transmitted as
plaintext (but still with the MAC). This helps a developer
locate set-up problems (for example, failing to set the same
key values at the sender and receivers) and application
problems: Frame B contains the original payload and
existing CAN analyzer tools can simply process the
unencrypted Frame B.

Summary

CryptoCAN is an encryption scheme specifically designed
for CAN. It fits the publish-subcribe paradigm common to
CAN systems, where a sender is not coupled to receivers.
It also supports the fast start of a receiver to participate in
encrypted communication.

CryptoCAN replaces a plaintext CAN frame with a pair
of ciphertext CAN frames with the same real-time proper-
ties, and where the latency of Frame B is the latency of the
message, allowing existing scheduling analysis tools for
CAN to continue to be used to calculate worst-case frame
latencies. CryptoCAN has also been carefully designed to
run efficiently on micro-controllers with no cryptographic
hardware, and the extra bandwidth used by CryptoCAN is
one extra CAN frame per original frame. The issue of replay
attacks has been directly addressed, with support for auto-
matically detecting and dropping replayed messages.

The CryptoCAN Micropython firmware is free to use
for the Canis Labs CANpico hardware. t

Author

Ken Tindell
Canis Automotive Labs
ken@canislabs.com
canislabs.com

a more personal touch
Landing soon:

Push to open

mailto:ken@canislabs.com
http://canislabs.com
https://www.safeline-group.com/en/news/landing-soon-a-more-personal-touch/

