
28 CAN Newsletter 2/2019

In past articles, the authors have introduced various
security methods which all had in common to work for

systems and devices of all sizes and hardware capabilities.
Along with the needed amount of flexibility, however,
typically come higher resource requirements. A product
that includes CAN and that has been sold for many years
may not have the amount of resources needed for extra
security features to spare. In this article we examine what
kind of CAN security we can still add to a deployed CAN
system if the processors have only medium performance
and we can only add a few kilobytes of extra code.

Motivation

Some things appear to have not changed significantly in
the past 20 years of Embedded Systems programming.
Back then we would start developing minimal solutions
for clients that wanted to add CANopen using “as few
resources as possible”. Today, clients want to add CAN
security to an already deployed system and again, often
with only minimal resources available. Same situation,
different technology.

We introduced the CANcrypt security framework
in previous articles. The framework offers enough
functionality and flexibility for a wide range of platforms and
security needs. However, especially in applications where
authentication for as many CAN frames as possible is the
number one requirement but encryption is not needed,
an alternative, cut-down Micro CANcrypt implementation
targeting low-footprint environment can fit the bill much
better.

At the same time, the authors thought of better
ways to apply CANcrypt methods to classic CANopen
and CANopen FD. In its original incarnation, securing
CANopen messages with CANcrypt would always need
either a second message or multiple reserved bytes in the
data payload while Micro CANcrypt will attempt to stay as
close to unencrypted CANopen as possible.

Micro CANcrypt optimizations

The biggest change compared to unsecured CAN
communications is the added security information, and
the question is where in the CAN frames we want to put
it. In networks that only use 11-bit-identifier CAN frames,
like virtually all CANopen systems do, it is convenient if
secure frames use a 29-bit CAN identifier instead, as
illustrated in Figure 1. In the available extra 18-bits long

What kind of CAN security can still be added to a deployed CAN system if the
processors have only medium performance and only adding a few kilobytes of
extra code is possible?

CAN security: how small can we go?

“security record” we can then put a 10-bit signature and
some control information. This method greatly simplifies
mixing non-secure and secure CAN communications – a
secure frame then still uses the same lower 11-bit portion of
the 29-bit CAN identifier as the unsecured frame
would, and the added security record can be easily
recognized.

Figure 2 shows the security information added to every
secure message in more detail. The record comprises
a 2-bit truncated key refresh counter, a 6-bit truncated
timer value and the 10-bit Micro CANcrypt signature. As
all devices synchronize their refresh counter and timer
locally, the truncated information is enough for receivers to
internally maintain the full counter and timer values.

Figure 3 shows how Micro CANcrypt devices
exchange event-specific information. The record uses
five bytes which are either transmitted in dedicated CAN
frames only for Micro CANcrypt events, or becomes
integrated into a higher-layer protocol. In CANopen for

Figure 1: Adding security information to a CAN frame
(Source: Emsa)

Figure 2: The 18-bit Micro CANcrypt security record
(Source: Emsa)

Se
cu

ri
ty

example, these five bytes fit nicely into the manufacturer-
specific part of the emergency message.

Looking at the keys used for authentication, we
also find optimization potential: Out of the full key
hierarchy that is part of CANcrypt, what is essential
is that the participating devices must support only at
least one permanent shared symmetric key and one
last-saved session key. The permanent key is only
used once in the beginning to generate a new
session key which is then used for all further
security algorithms, thus minimizing the use and
possible exposure of the permanent key. The core
security algorithms use a lightweight block cipher
with 64-bit blocks and 128-bit keys. Our first demo
implementations use XTEA-64 or, alternatively,
Speck-64. Finally, Micro CANcrypt introduces a
new secure key sync cycle, which is a simplified
variation of the CANcrypt secure heartbeat.

Micro CANcrypt secure key sync cycle

The original CANcrypt mechanism for the secure heartbeat
offers too much flexibility (between 2 and 15 nodes may
participate) for an implementation with limited resources.
In Micro CANcrypt, four devices actively maintain a
dynamic key, each of them using one grouping / key
refresh message. If a network has fewer than four devices,
a single device can also produce the CANcrypt messages
for two. The new secure key sync cycle therefore
always has two to four active participants while all others
are passive participants. Both active and passive
participants become part of a secure group where all
parties consume the secure key sync and know the
shared secrets (symmetric key, timer, counter), allowing
them to receive and generate secured messages. Each
secure key sync cycle produces a random initialization
vector which is then used to generate the current
rolling dynamic key from the session key. With a new
secure key sync cycle happening every second, the
maximum lifetime of the dynamic key is
reduced to two seconds, still leaving some time to
handle errors. To protect from replay attacks, CANcrypt
uses a message counter. However, tracking an individual
counter for each CAN identifier received or transmitted
requires quite a few resources. Therefore, Micro
CANcrypt uses a synchronized timer value instead. A
16-bit timer counting five-millisecond-increments
is synchronized as part of the secure key sync
cycle. Figure 4 summarizes all active synchronized
values.

Figure 5 illustrates how four event messages use the
extended security record to share information. Here the
extended security record contains a 16-bit timer and a
16-bit random value. These synchronized messages are
used once per second to share / create an initialization
vector (IV) for a dynamic, current key from the session
key and to synchronize a 16-bit timer value and an
8-bit key refresh counter. A full block cipher cycle is
used to generate the dynamic key from a shared
symmetric permanent key using the IV generated in each
cycle.

https://esd.eu/en/content/can-canopen-devicenet

30 CAN Newsletter 2/2019

Signature generation performance
requirements

One goal of Micro CANcrypt is to be able to perform
a signature generation or verification for every CAN
frame processed by a device. At a CAN bitrate of 125
Kbit/s, potential throughput is about one CAN frame
per millisecond. At 500 Kbit/s, it can be four frames per
millisecond.

A rough estimation: Let’s assume that a CPU may
use 50 % of its CPU time for CAN processing and that for
signature calculation a maximum of 10 % additional CPU
time is allowed, then this translates to:

 ◆ 125 Kbit/s: 1 ms per CAN frame, CPU time 500 μs,
10 % translates to 50 μs available for signature
calculation.

 ◆ 500 Kbit/s: 250 μs per frame, CPU time 125 μs, 10 %
translates to 12,5 μs available for signature calculation.

These estimates already show that there is not always
enough CPU time to execute a full lightweight block cipher
with all rounds for every signature in every CAN frame,
as not all micro-controllers in use will have the needed
performance. However, when keeping in mind, that

 ◆ a pseudo one-time pad is used that changes every
5 ms

 ◆ the current dynamic key is based on a session
key

 ◆ the current dynamic key is valid for a maximum of
two seconds only, therefore the number of messages
communicated in that time frame (= samples to
attacker) is limited

 ◆ as shown below, attacker will never see all data, only
portions of it (see method below)

It means that the method chosen to generate a
digital signature does not need to be protected to the
highest extent. The Micro CANcrypt method to generate a
signature is illustrated in Figure 6. The steps to calculate
the transmit-side signature are:
1. Generate a 64-bit checksum of the CAN identifier,

DLC and data.
2. Take the current 16-bit timer, counter and dynamic key

to create a pseudo one-time pad, using only a portion
of the recommended rounds of the block cipher
(default: one quarter).

Figure 3: The extended security record (Source: Emsa)

Figure 5: The secure key sync cycle (Source: Emsa)

Figure 4: Synchronized, shared parameters, and secrets
(Source: Emsa)

Figure 6: Signature generation (Source: Emsa)

Se
cu

ri
ty

3. Encrypt the buffer using only a portion of the
recommended rounds of the block cipher (default: one
quarter).

4. We now have a 64-bit signature buffer which needs to
be reduced to 10 bits. The value of the lowest six bits
of the buffer is taken as the bit position of the 10-bit
slice from the buffer that is used as Micro CANcrypt
Signature for this CAN frame.

To verify the signature during secure receive:
 ◆ First, verify that the key refresh counter received

matches the local key counter or is from previous
cycle.

 ◆ Second, verify that the received timestamp is not older
than 25 ms compared to the local timer.

Then perform the same steps as above to generate the
receive-side Micro CANcrypt signature. For the generation
of the one-time pad use a full timer value, comprising the
lower-16-bit timer value received with the frame and the
upper bits of the local timer. If it matches with the received
transmit-side signature, the frame is authentic.

Overview of resources used

First prototype implementations of Micro CANcrypt are
being done on an NXP LPC11Cxx (ARM Cortex-M0, 48
Mhz) for Classical CAN and an NXP LPC54xxx for CAN FD.
For a full integration demo, we use the multilayer security
demonstrator, adding Micro CANopen security not only
to evaluation boards, but also to commercial CANopen

(FD) modules from Peak-System Technik and Embedded
Systems Solutions.

Additional CAN traffic and bandwidth

The secure key sync cycle uses four extended security
records, in CANopen integrated into the manufacturer-
specific field of the emergency message and using an
EMCY error code below 100h to indicate no error. These
are used once per second normally or twice per second on
failure / recovery. At 125 Kbit/s, the generated bus load
for this mechanism is less than 0,01 %.

All existing 11-bit CAN identifier communication
that requires security now uses a 29-bit CAN identifier
which generates an overhead of about 20 bits per CAN
frame, assuming an average of 2 stuffing bits. With CAN
frames being some 60 bits to 125 bits long (incl. stuffing
bits, assuming DLC between 1 and 8), the overhead
calculates to between 16 % and 33 % for all secured
messages.

Memory usage

Code size of the Micro CANcrypt specific secure
grouping mechanism is below 2000 bytes for the
Cortex-M0, using a Keil/ARM Realview compiler at its
highest optimization level. Added to this is some “glue”
code to interface with the driver level, the size of which
highly depends on driver specifics. RAM and stack usage

https://can-newsletter.org/uploads/media/raw/a913e80ff49cf0bb960a2337e14ebfef.pdf
http://www.isit.fr

32 CAN Newsletter 2/2019

depend a lot on the buffering scheme used for keys, cipher
blocks and CAN frames. An additional 1000 to 2000 bytes
can be expected.

Computational resources

An ARM Cortex-M0 at 48 Mhz can execute a full
Speck block cipher in less than 30 μs, a full XTEA
cipher in less than 40 μs. A full block cipher (all
rounds) is executed twice for initial grouping, then
once per second or twice per second on failure or
recovery. Each message transmitted or received requires
the digital signature generation. Using Speck and one
quarter of recommended rounds for the one-time pad
and one quarter for the checksum encryption, the CPU
time required on the ARM Coretex-M0 comes to about
15 μs. This is already close to the 12,5 μs desired in the
estimation above.

Figure 7: The CANopen multi-level security demonstrator by NXP
(Source: Emsa)

 ◆ Olaf Pfeiffer (EmSA): CAN security with hidden key
generation (CAN Newsletter magazine 2/2016)

 ◆ Olaf Pfeiffer (EmSA): Scalable CAN security
(CAN Newsletter magazine 2/2017)

 ◆ Olaf Pfeiffer, Christian Keydel (EmSA): Security
expectations vs. limitations, part 1 (CAN Newsletter
magazine 1/2018)

 ◆ Olaf Pfeiffer, Christian Keydel (EmSA): Security
expectations vs. limitations, part 2 (CAN
Newsletter magazine 2/2018)

 ◆ Olaf Pfeiffer, Christian Keydel (EmSA): Self-confi
guring CANopen controller (CAN Newsletter
magazine 2/2018)

 ◆ Olaf Pfeiffer, Christian Keydel (EmSA): No excuses
for not securing your CAN FD communication (CAN
Newsletter magazine 3/2018)

 ◆ Olaf Pfeiffer, Christian Keydel (EmSA): CANopen
FD multi-level security demonstrator (CAN
Newsletter magazine 1/2019)

CAN and security

Authors

Olaf Pfeiffer, Christian Keydel
Emsa (Embedded Systems Academy)
info@esacademy.com
www.esacademy.de

CAN receive filtering

It is important to do any CAN
receive filtering before authenti-
cation. The 29-bit CAN identifier
still contains the original 11-bit
one from its unsecured frame
counterpart, so current receive
filters need to be adapted
accordingly. An authentication
cycle should start not before a
filter is set to receive this.

Outlook

In the next issue of the CAN
Newsletter magazine, you can
expect to read about first
real-system integrations with
Micro CANcrypt. At that point

we will be able to give you even more specifics on
memory sizes and CPU performance required. In addition,
we will review how well this is suited not only to
classical CAN but also to CAN FD communications and
review possible attack vectors. t

Se
cu

ri
ty

http://can-newsletter.org/uploads/media/raw/0bfc444616cbf2e6f644ce1067203680.pdf
https://can-newsletter.org/uploads/media/raw/b373ba10826c05baa2f525c3e4d9ab4b.pdf
https://can-newsletter.org/uploads/media/raw/8a34f7f0d457d109ac17e6a791c4e0dc.pdf
https://can-newsletter.org/uploads/media/raw/0e3c8996563d4419540aa24b51266827.pdf
https://can-newsletter.org/uploads/media/raw/4ea6f0e74aeb6b2dde7452faf9cf4b0e.pdf
https://can-newsletter.org/uploads/media/raw/4e5736d963f4e0e2b3487580130d3c1f.pdf
https://can-newsletter.org/uploads/media/raw/a913e80ff49cf0bb960a2337e14ebfef.pdf
mailto:info@esacademy.com
http://www.esacademy.de

http://www.ifm.com/gb/mobile

	ad esd:
	ad isit:
	ad ifm:

