
38 CAN Newsletter 2/2019

The DMU add-on allows the reduction of the host con-
troller load by off-loading the transport of CAN frames 

to a DMA controller. The TSU expansion module enables 
hardware-based and Autosar-compatible time synchroni-
zation.

When exchanging CAN data frames between the 
host controller and the M_CAN protocol controller, there 
are some issues to consider, especially for complex 
SoCs (system-on-chip). Due to the high complexity of 
modern SoC architectures, the on-chip communication 
paths are divided into several domains of different 
performance. The bridging between domains additionally 
slows down performance, e.g. due to clock-domain 
crossings.

The heat-map (red = fast, blue = slow) in Figure 1 
illustrates the speed of data transfers initiated by the host 
controller in the processor domain. Thus, the connection 
of the host controller core to the dedicated caches is the 
fastest, followed by the TCM within the cluster. When 
creating the software, it must be ensured that these 
memories can be used efficiently.

In extreme contrast to this, single accesses to 
components in the peripheral domain can be up to 
30 times slower. If, for example, the continuous exchange 
of CAN frames between the host controller and a M_CAN 
unit is considered, the following interactions are typically 
required:

 ◆ Check the status register of M_CAN when asserting an 
interrupt

 ◆ Optionally transfer the CAN data frames
 ◆ Optionally signal to the M_CAN the completion of 

frame transfers
If the cores  in the processor domain would perform 

these interactions, they would be significantly slowed 
down by the NoC (network on chip). For example, such 
interactions can also be done via a processor core 
within the peripheral domain, if available. However, 
this article focuses on a different approach that does 
not allocate computational resources of any processor 
core.

DMU functionality

Bosch offers an add-on for the M_CAN called DMU. With 
this, the continuous exchange of CAN data frames can be 
completely outsourced to a DMA controller. The add-on 
unit is based on the concept of virtualizing the FIFO (first-
in, first-out) head elements (Figure 2).

Bosch has improved its M-CAN. The added functions include a DMA interface 
unit (DMU) and a time stamping unit (TSU).

CAN IP core with DMU and TSU

The M_CAN has an associated message RAM 
(MRAM), which i.a. contains the elements (CAN data 
frames) organized in FIFOs. To access the memory 
segment of the current message (head element) within 
these FIFOs by the host controller, the respective pointers 
(read/write pointer) from the M_CAN must previously be 
queried. To avoid this, accesses to fixed address areas are 
virtualized. The DMU dynamically redirects these accesses 
to the head elements in the MRAM. The redirection is 
controlled invisibly within the DMU by the FIFO pointers in 
the M_CAN. The size of the reserved areas corresponds 
to the largest possible frame elements, which are 18 
words (32-bit) for the TX, RX0, and RX1 elements and two 
words (32-bit) for the TX Event element (three words, if the 
TSU timestamp is also transferred). The transfer of a last 
element word activates a process in the DMU, in which 
for TX elements the transmit request is set in M_CAN, 
or for the other elements (RX0, RX1, TXE) the dedicated   
FIFO acknowledge is set in the M_CAN unit. Thus, writing 
or reading the CAN data frames via DMU elements 
completes the whole queuing/de-queuing process in the 
M_CAN unit. The DMU supports data frame transfers 

Figure 1: Domains of a SoC (Source: Bosch)

En
gi

ne
er

in
g



39CAN Newsletter 2/2019

from the CRAM to the TX-FIFO/Queue and vice versa, 
from the RX-FIFOs respectively the TX-event FIFO to the 
CRAM. The block diagram in Figure 3 shows the M_CAN 
unit with the add-ons DMU and TSU. The host controller 
accesses to the M_CAN are routed through both add-on 
modules.

Figure 4 shows the memory map of the DMU. In the 
yellow marked memory area starting at address 0, the 
registers of the M_CAN unit and the TSU are memory-
mapped. Afterwards, the purple coloured Virtual Buffers 
are shown, which are accessed by the DMA in order to 
transport the head elements of the M_CAN message 
FIFOs.

TX element

The CAN data frame elements are written by the DMA 
controller to be added in the TX-FIFO/Queue. When writing 
the last element word, the TX request is automatically set 
for this element, so that the M_CAN unit sends this. The 
DMU requests further CAN data frame elements from the 
DMA controller as long as the TX-FIFO/Queue is not full.

RX0 / RX1 elements

The CAN data frame elements are read by the DMA 
controller, which are located in the receive FIFO 0 or 
FIFO 1 of the M_CAN unit. When the last element word 
is read, the de-queuing is communicated to the M_

Figure 2: Functional block diagram of the DMU (Source: 
Bosch)

Figure 3: M_CAN unit with DMU and TSU (Source: Bosch)

CAN unit by setting the dedicated acknowledge index 
by the DMU. Optionally, the time-stamp of the TSU can 
also be transmitted. The DMU triggers the DMA to 
de-queue further CAN data frame elements as long as 
the RX-FIFO is not empty.

TX event element

Like the RX0 / RX1 elements, but here the TX 
events are read, optionally with the time stamp of the 
TSU.

DMU register

The DMU gets most of the configuration parameters from 
the M_CAN, only the transport of the hardware time-stamp 
of the TSU can be switched on/off. The status information 
provides feedback on whether the access to the virtual 
elements is correct or, if not, what problem occurred. This 
is particularly helpful when debugging the DMA routines, 
but should also be monitored during normal operation for 
reasons of functional safety.

DMU debug section

When debugging the software, the DMU elements can 
be accessed by reading  without affecting the queuing 
or de-queuing of the DMA. For the TX element, the 
last element written is read, for the RX0, RX1, and 
TXE elements the current element is read. These 
accesses do not trigger automatisms of the DMU, like the 
acknowledgment in M_CAN core.

Data flow within the SoC

The following approach is recommended for the data 
flow within the SoC: A RAM has to be selected to which 
the desired processor core can access with the highest 
possible read/write performance and to which the DMA 
controller also has direct access. This CRAM is then used 
to exchange the CAN data frames, with the DMA controller 
taking over the slow transfers of the CAN data frames 
across large distances of the NoC and storing them in the 
CRAM close to the processor core, which then access 
without performance loss.

TSU add-on

For the Autosar-compatible (automotive open system 
architecture) synchronization of time bases between 
CAN nodes, only software implementations had been 

En
gi

ne
er

in
g



40 CAN Newsletter 2/2019

used due to a lack of 
special hardware. To 
further increase the time 
accuracy, special hard-
ware is required. The 
CiA 603 document speci-
fies a hardware-based 
concept, which has been 
implemented in TSU. This 
approach is independent 
of interrupt response 
times and thus achieves 
the best possible accuracy. 
The TSU may operate 
on its own internal time-
base, or uses an external 
time-base, e.g. a reference 
time base within the SoC.

Receipt of 
messages with 
timestamp

In order to receive a 
time-stamped message, 
a base or extended frame 
ID filter element must be 
configured accordingly, 
i.e. S0.SSYNC = 1 or 
F1.ESYNC = 1. Upon 
receipt of a valid data frame 
matching the filter, the 
time-stamp is stored in 
the TSU. Since the  
TSU stores several time-

stamps, a pointer is written into the CAN data frame 
(R1.RXTSP), which points to the corres ponding entry 
in the TSU. When reading out such an RX data 
frame with the DMU, the TSU time-stamp can be 
automatically attached.

Sending messages with timestamp

If a time stamp has to be generated when a CAN data 
frame is sent, the following bits must be set in the mes-
sage: T1.TSCE = 1 and T1.EFC = 1. Upon successful trans-
mission, a time-stamp is stored in the TSU and a TX-Event 
message is generated, which refers to the corresponding 
entry in the TSU, i.e. field TXTSP in event message word 
E1 (E1.TXTSP). When using DMU, the time-stamp of the 
TSU can also be automatically attached.

Synchronization process after Autosar

After successful configuration (see above) of all participat-
ing CAN nodes, the timers of the time slaves can be cor-
rected with a two-step synchronization process. In the first 
step, the current time T0 is latched in the time master, and 
the part of T0, which represents the seconds, is sent to the 
time slaves with the SYNC message. If the EoF is reached 
when sending this SYNC message, then timestamps are 

Figure 4: DMU address map 
(Source: Bosch)

Authors

Stefan Thiele
Robert Bosch
info@de.bosch.com
www.bosch.com

[1] Time-stamping of CAN frames, CAN Newsletter 
 2/2017[2] CiA 603, CAN frame time-stamping – 
 Requirements for network time management, 
 Nuremberg 2017
[2] CiA 603, CAN frame time-stamping – Requirements 
 for network time management, Nuremberg 2017

Literature

stored in the TSUs of all nodes, i.e. in the Time Master 
and all Time Slaves. This is the common point of time ref-
erence. In the second step, the time master adds its TSU 
time stamp to the nanosecond part of T0 and sends it to 
the time slaves via FollowUp message. From this, the time 
slaves can derive their own time base. 

Saving time stamps at SoF

For non-Autosar applications, the TSU can also be config-
ured to store time-stamps at the start of a CAN data frame 
(SoF bit).                                                                             t

En
gi

ne
er

in
g

mailto:info@de.bosch.com
http://www.bosch.com
mailto:info@de.bosch.com
http://www.bosch.com


YOUR
TRUSTED
CAN
PARTNER

YOUR
TRUSTED

PARTNER
www.kvaser.com

Advanced CAN solutions built by engineers, for engineers.
Kvaser CAN Interfaces & dataloggers are the reference for CAN and related bus protocol connection.
Kvaser is committed to providing open solutions that ensure easy toolchain integration. 

Combine Kvaser hardware with software from our Technical Associates for a powerful, tailored solution.
Free software includes Kvaser CANlib SDK, a one-stop development environment for our CAN and LIN interfaces, and
Kvaser’s free CanKing bus monitor. Windows and Linux versions available, accessible through Python.
Free global support. Our International Support Team provide timely email and phone support to Kvaser customers
throughout the world.
Unique design: Lightweight, ergonomic, durable, and flexible.

#CAN FD

#LINUX

#LIN

#DATALOGGING

#MAGISYNC

#SCRIPTING

#RUGGED

sales@kvaser.com

#SILENTMODE #EMBEDDED

#ETHERNET

http://www.kvaser.com

	ad kvaser: 


