
23CAN Newsletter 2/2021

The open-source Sigrok project is a set of drivers and tools. It provides a 
desktop oscilloscope and logic analyzer UI (user interface) that can control 
different instruments (from Siglent, Rigol, and others).

CAN decoder warns for malicious attacks

The UI runs on Mac OS, Windows and Linux and is 
called Pulseview. Integrated is also a command-line 

tool for batch decoding, useful in an automated test envi-
ronment. Pulseview has an API (application programming 
interface) for protocol decoders. Recently, a decoder for 
CAN has been introduced.

Figure 1 is a screenshot of the decoder showing a CAN 
frame. Here, the Pulseview interface runs on Ubuntu Linux. 
The logic analyzer hardware used here is a 16-channel 
Saleae Logic16. But the available USB logic analyzers  
that cost less than 10 US $ with eight channels and a 
sample rate of up to 20 MHz are also suitable for use  
with CAN. A falling-edge trigger condition is typically 
used with CAN (this is the sync point for the protocol). A 
pre-trigger buffer enables the decoder to see at least ten 
recessive bits to know that the next dominant bit is a new 
frame.

The decoder shows four lines of details about a CAN 
frame: 

 ◆ The raw bitstream (including stuff bits)
 ◆ The decoded CAN fields
 ◆ The decoded CAN-ID and payload bytes
 ◆ An information line showing protocol events and 

warnings

View of details

Pulseview shows as much details as fits into an item for a 
given time scale, but a tooltip appears with the full data if 
the mouse pointer hovers over an item. For example, the 
value of the 4-bit DLC (data length code) field with a tooltip 
is shown in Figure 2.

The decoder also checks the frame for valid fields and 
marks when an error is detected. For example, it will show 
in the warning line when the received CRC (cyclic redun-
dancy check) does not match with the calculated CRC, when 

the ACK (acknowledge) field is not 0, when a stuff error has 
been detected, and so on. It also shows an active error frame 
including the superposition, the error delimiter, and the IFS 

(interframe space) field following an error frame.
The warning as shown in Figure 3 is a stuff error – the 

result of an error being signaled by another CAN controller. 
The decoder shows the error flag (which includes the super-
position of dominant bits from many controllers) and the error 
delimiter. The trace also shows the frame being re-transmit-
ted successfully.

The double-receive event is a particularly interesting 
property of CAN. Because a frame is received one bit-time 
before it is transmitted, it is possible that an error in the last 
bit of the EOF (end of frame) causes the transmitter to detect 
an error and retransmit the frame, leading to it being received 
twice. This is not a bug in the CAN protocol: it is an inevita-
ble consequence of implementing an atomic broadcast pro-
tocol (something that most other communication protocols do 
not even attempt to provide, which is one reason why CAN is 
such a superbly reliable fieldbus protocol). 

As seen in Figure 4, the decoder warns of this specific  
event (double receive). This event should happen rarely 
(a bit error must occur exactly at the last bit of EOF). But 
it can be engineered to occur by an attack on the bus: by 
deliberately injecting a dominant bit at the last bit of EOF, 
an attacker can force the frame to be retransmitted and 

Figure 1: Decoder screenshot of a CAN frame (Source: 
Canis Automotive Labs)

Figure 2: Value of the 4-bit DLC field shown with a tooltip 
(Source: Canis Automotive Labs)

Figure 3: Warning about a stuff error (Source: Canis 
Automotive Labs)

En
gi

ne
er

in
g



24 CAN Newsletter 2/2021

received twice. If the frame being targeted contains an event 
data, then that event will be acted upon twice by receivers, 
which could cause all kinds of things to go wrong – the very 
purpose of a malicious attack.

The decoder also shows when there is an overload 
frame – something that should never be seen since mod-
ern CAN controllers never generate these frames. The 
screenshot in Figure 5 shows a frame that is sent, but then a 
sequence of overload frames is injected to hold all the CAN 
controllers in an overload loop. This is a clear indication  
of a type of denial-of-service attack on the CAN network. In  
this case it was carried out by the CANhack toolkit. The 
CANhack toolkit is an open-source library for demonstrat-
ing attacks on the CAN protocol: github.com/kentindell/
canhack.

The protocol decoder is designed to help spot these 
events from a logic analyzer trace – it can see things that 
a simple list of received CAN frames would not show. But it 
also can interface to CAN frame logging tools. The decoder 
has an option to export CAN frames in a packet capture for-
mat (called “pcapng”) that tools such as Wireshark can pro-
cess. A trace of many frames can be shown in Wireshark as 
a conventional list of frames. For example, the screenshot  
in Figure 6 shows the trace of a pair of CAN frames sent 
roughly every 100 ms.

When the exported packet capture file is read in to the 
Wireshark tool, it is shown as a simple list of frames (see 
Figure 7).

Figure 4: Warning about a double receive (Source: Canis 
Automotive Labs)

Figure 5: Warning about an overload frame (Source: Ian 
Tabor)

Figure 6: Trace of a pair of CAN frames sent roughly every 
100 ms (Source: Ian Tabor)

The timestamps attached to the CAN frames in the 
packet stream are very accurate. These are useful when 
hunting for a particular incident in the frame view of the 
Wireshark (or other tools) to navigate within Pulseview to 
find details of what was happening on the wire around an 
incident.

Unveiling hidden problems

The decoder has already helped one developer to solve 
a problem with their system. Ian Tabor (@mintynet on 
Twitter) is a car hacker who has developed a low-cost 
“car in a box” system for people to practice hacking. 
The hardware includes the ability to send CAN frames 
from three different buses to a monitoring bus via an  
MCP2515 CAN controller from Microchip. The driver  
was running very slowly and unable to sustain 
throughput that was needed. But Pulseview was 
able to show where the time was going: the CAN  
protocol decoder showed the CAN frames and  
the Pulseview SPI decoder (serial peripheral  
interface) showed where the SPI transactions were  
taking place. The screenshot in Figure 8 shows the  
situation before.

The screenshot in Figure 9 shows the situation after 
the drivers were optimized, reducing the time between 
frames from nearly 500 µs to just over 300 µs.

Figure 7: The exported packet capture file is shown as a 
frame list in Wireshark (Source: Canis Automotive Labs)

Figure 8: CAN traffic before driver optimization (Source: Ian 
Tabor)

Figure 9: CAN traffic after driver optimization reducing the 
time between frames (Source: Ian Tabor)

En
gi

ne
er

in
g

https://github.com/kentindell/canhack


The tool’s availability

The source code to the CAN protocol decoder is avail-
able in the CANhack toolkit repository on Github at github.
com/kentindell/canhack. The decoder is in the folder src/
can2. The best way to install the Sigrok tools (Pulseview  
and Sigrok-cli) is to download them directly from Sigrok.  
More details on setting up the decoder can be found  
here.                                                                                   t

Author

Ken Tindell
Canis Automotive Labs
ken@canislabs.com
canislabs.com

The CANPico board has been recently released by 
Canis Automotive Labs. It integrates a Microchip 
MCP2517/18FD CAN controller with a 2-KiB buffer 
and the Microchip MCP2562FD CAN transceiver. 
Jumpers are available for connection of a 120-Ω 
CAN termination resistor and for disabling of transmit 
access to the CAN network (listen-only access). There 
is also a 6-pin header for connection of a logic analyzer 
(e.g. the CAN2 protocol decoder) or oscilloscope. The 
included Trig pin can be set in order to trigger the logic 
analyzer on a specific CAN-ID or a CAN error frame.

Along with the board is a pre-built Micropython 
SDK (start development kit) firmware, with a CAN 
API that includes priority-inversion-free drivers, time-
stamping (both send and receive), control of CAN-ID 
filters, and a CAN bit-rate setup. The board is ready 
for order online from SK Pang. It is shipped with a 
Raspberry Pi Pico and the pre-installed firmware. 
More detailed information is available here.

of

CAN board for Raspberry Pi Pico

 

CiA e-learning

For more details please contact 
CiA office at events@can-cia.org

 

www.can-cia.org

CiA seminars online
Date Language

CAN 2021-07-07 English

CANopen 2021-07-08 English

CAN 2021-09-14 English

CANopen 2021-09-15 English

Having the Covid-19 pandemic in mind, hope-
fully we are able to welcome you to our on-site 
seminars at CiA office.

CAN
knowledge

online

CiA seminars

Date Language

CAN for Newcomers 2021-10-05 German

CANopen for Newcomers 2021-10-06 German

CiA in-house seminars online
CiA engineers discuss your urgent CAN-related 
issues that are currently of high interest with  
regard to your projects.

https://kentindell.github.io/can2
https://www.skpang.co.uk/products/canpico-board
https://kentindell.github.io/2021/05/18/canpico-availability
mailto:ken@canislabs.com
http://canislabs.com
https://www.can-cia.org/services/seminars/
https://kentindell.github.io/2020/12/19/can2-decoder/
http://github.com/kentindell/canhack
https://sigrok.org/wiki/Downloads



