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Continued development of comprehensive and struc-
tured testing methods and tools for electronically net-

worked aircraft and cabin systems is not only necessary 
for economic reasons. With the recent safety-critical pilot 
assistance systems such as Enhanced Vision and Run-
way Overrun Protection Systems or with "wireless" cabin 
functions each requires appropriate testing strategies that 
are compliant to the regulatory rigors assigned to them (i.e. 
DO-178C). This article describes Vector’s approaches and 
concepts.

The software in avionics and ground-based systems 
are bounded by strong regulatory standards DO-178C 
and DO-278 respectively. With failure regarded as “not an 
option”, significant analysis and effort is put into the veri-
fication and validation of these systems. In fact, industry 
wide, in a typical project fifty percent of the development 
budget is used for structural testing the software according 
to Federal Aviation Administration (FAA) DO-178C Level A 
[1]. The ability to automate and simulate these systems can 
greatly assist in reducing the overall effort, and hence the 
implementation costs.

There are three major phases of verification and vali-
dation in avionics and ground-based software (Figure 1): 
unit testing, integration testing, and system/functional test-
ing. In each phase, test cases need to be derived from 
their appropriate level of requirements with full traceability 
between both.

While the concepts and methodologies for low level 
testing have been reasonably consistent over the years, the 
introduction of more networked systems based on the CAN 

and AFDX protocol, and the drive for code reuse, demands 
innovations in the approach as to how the software should 
be tested. To find good solutions, other industries can be 
considered that have successfully deployed complex net-
worked systems, with rapid time to market demands and 
highly critical functionality. An example is the automotive 
market, with its drive by wire systems, autonomous vehi-
cle technology, 18 to 24 month development cycle and  
CAN/Ethernet networked platforms.

The similarities in particular in CAN-based systems 
make it possible to transfer proven concepts and pro-
cesses from the automotive industry into the avionics 
domain. CAN is currently used in modern civil aircrafts like 
A350 and Boeing 787 for systems such as environmen-
tal control, doors, galleys, smoke detection, potable water, 
and de-icing. Furthermore young companies acting in the 
emerging market of hybrid and full electric air vehicles for 
new urban air mobility concepts rely on CAN-networks as 
well.

Due to the specific challenges like long cables, 
extreme environmental conditions, stringent lightning pro-
tection requirements, and long service life, adequate test 
strategies at all test levels must be foreseen.

The approaches can be considered at three levels as 
described in section 6.4.3 of the DO-178C standard: low 
level testing, software integration testing, and hardware/
software integration testing. Finally, it is worth considering 
how these can be coupled into a process which provides 
greater agility as well as introducing shift-left strategies 
into the development process.
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Low-level testing

This testing level is used to test the low-level requirements 
and is usually accomplished with a series of unit tests that 
allow the isolation of a single unit of source code. To test a 
single unit in isolation, a huge amount of framework code 
such as test drivers and stubs for dependencies (Figure 2) 
must be generated. Ideally, this should be done automati-
cally with a tool that offers an intuitive and simple approach 
for defining test scenarios. This meets the main require-
ments of section 6.4.2 “requirements-based test selec-
tion” and the sub-sections “normal range test cases” and 
“robustness test cases” of the DO-178C standard. With the 
growing need for code reuse, it is very likely the same unit 
of source code might be used in several configurations. 
Therefore, it is important that the definition of a test case 
is not tightly coupled to the code and provides flexibility in 
how they can be maintained as the software evolves over 
time. Typically, the use of a data driven interface for the 
definition of test cases has proven to be more maintainable 
over time than a source code definition.

This approach also means that when the source code 
and associated test cases are deployed in a continuous 
delivery workflow, as changes are made to the code, the 
testing framework can quickly be regenerated and the test 
cases appropriately remapped. Where significant changes 
have been made, these can be flagged for further review 
without breaking the rest of the automated workflow.

A good example of this is the embedded software 
testing platform Vectorcast, that automates testing activ-
ities across the software development lifecycle. It fully 
supports testing on target or using the target simulator nor-
mally provided by the compiler vendor. Structural cover-
age from testing isolated components can be combined 
with the coverage gathered during full integration testing to 
present an aggregated view of coverage metrics.

Vectorcast test cases are maintained independent of 
the source code for a data-driven test approach. This tech-
nique allows tests to be run on host, simulator, or directly on 
the embedded target in a completely automated fashion.

Software integration testing

Software integration testing verifies the interrelationship of 
components. This concept is also known as software-in-
the-loop (SIL) testing. The idea here is to bring the soft-
ware components together and test them without any of 
the complexities of the underlying hardware. A critical 
aspect of testing software during this phase is the ability 
to simulate dependencies and interfaces in the integrated 
unit that is under test.

To simulate this software conveniently, it is common 
to use a host-based compiler like Visual Studio, GCC, 
MinGW, etc. to run the code, and then once a level of con-
fidence has been achieved, the cross-compiler can then 
also be used. Depending on the certification level for DO-
178C in Level C, B or A, certification credit for the activity 
may only be permissible when done using the cross-com-
piler and running on the target.

In the low level testing framework, the collection of 
software units can still only be tested via programming 
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API calls. In this case the use of a test automation frame-
work like Vectorcast is ideal, as it will automatically build 
the required drivers and stub any units that are outside 
the units of interest automatically. There could also be an 
opportunity to reuse some of the test cases from low level 
testing for units that are higher in the call tree.

Alternatively, the software components to be tested 
may be closely reliant on the underlying hardware, and 
a more robust simulation of the underlying hardware is 
required to correctly verify the software functionality in this 
case.

Hardware/software integration testing

This type of testing is used to satisfy high level require-
ments and is performed on the target hardware using the 
complete executable image. The challenge when testing 
at this level is to provide enough external stimulation to the 
line replaceable unit (LRU) such that it functions correctly. 
The external simulation comes in various forms: logical 
pins, avionics data network, modeling tools, etc. Addi-
tionally, because of the complex nature of the networks, it 
should also be possible to easily extend or customize the 
simulation interfaces quickly and easily. 

An example system to validate an LRU at this level can 
be setup using the tools VT System and CANoe (Figure 3). 
The software and hardware combination CANoe and VT 
System from Vector offers a test system that can be scaled 
from simple test equipment at the developer workstation to 

the highly automated HiL environment in the test lab. The 
core idea of the VT System is to combine all the hardware 
functions required for LRU testing in a modular system 
seamlessly integrated into CANoe. The test hardware 
covers the inputs and outputs, including the power supply 
and network connections of a control unit or subsystem. 
At each pin, the pin function according to stimulation, 
measurement, load simulation, fault connection, and 
switching between simulation and original sensors and 
actuators are possible. These functions are so universally 
designed that a once constructed test system can be used 
for different LRUs.

In CANoe, in addition to the network environment, 
the physical environment can also be simulated using 
appropriate Matlab / Simulink models. A closed hardware-
in-the-loop simulation is just as possible as a simple, 
manual stimulation without elaborate models. CANoe offers 
the same flexibility in test automation. The tool Vteststudio 
provides a modern authoring tool. The possibilities to 
define tests range from programming in various languages 
like the Vector own Capl and .NET/C# over defining simple 
test procedures in tabular form to graphically noted test 
models. It is used to define test procedures and allows the 
developer to flexibly combine the different input methods. 

Figure 1: The major phases of verification and validation 
in avionics and ground-based software (Source: Vector 
Informatik)

Figure 2: Low level testing framework to test a single 
software unit in isolation – using framework code such as 
test drivers and stubs for dependencies (Source: Vector 
Informatik)

Figure 3: Example setup for simulating the environment 
around an LRU (Source: Vector Informatik)

Figure 4: Change-based testing greatly reduces testing 
time while ensuring testing completeness (Source: Vector 
Informatik)
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The finished test sequences are stored as test units and 
are then executed in CANoe.

CANoe executes the test cases and at the end of each 
test run the system creates a detailed test report. Finally, 
all threads from test and execution planning to execution 
documentation converge in test data management. This 
always ensures good traceability.

Bring it all together to enable a lean  
continous integration platform

One of the biggest challenges with software development 
today is the unintended propagation of defects or issues 
through the development cycle of a system. These issues 
can often be identified very early in the development cycle 
but are missed because the software is merged without the 
adequate verification and validation in place. To address 
this quality issue, there are various discussions on the 
topic of ‘shift left’, i.e. test earlier in the process. However, 
in general the time required to rerun all low level, software 
integration, and hardware/software integration tests can 
be very time consuming. In some cases, a complete end 
to end run of all test cases can take between three weeks 
to as long as two months. This time frame does not fit the 
rapid feedback that is required to provide developers with 
early feedback of issues that they might have introduced at 
the time of writing the software.

To address this challenge, the concept of change-
based testing (CBT) can be introduced. This method helps 
organizations test faster and smarter by analyzing each 
code change against all existing test cases and choosing 
the sub-set of tests that are affected by the change (Figure 
4). By running only this sub-set of tests, test execution 
times are greatly reduced, and developers get immediate 
feedback on the impact of their changes. This allows bugs 
to be fixed immediately, when they are introduced, rather 
than weeks later, during “full” testing.

By using a test automation platform like Vectorcast, 
structural code coverage is collected from all levels of 
testing like low level, software integration, and hardware/
software Integration. The ability to integrate the code 
coverage reporting with software integration and hardware/
software integration tools like CANoe and VT System 
provide a single perspective of the system’s aggregated 
code coverage, and how a specific test directly contributed 
to the overall code coverage. Thus, when a change is 
made to the underlying software, the Vectorcast decision 
engine quickly computes the impacted tests at all levels 
and dispatches them appropriately – even when the test 
is to be run through CANoe or VT System. Running a 
subset of tests represents a significant time saving in the 
execution time, and shortens the time taken to determine 
an impact from a change made to a matter of hours with a 
high level of confidence.

Conclusion

As the complexities of avionics and ground-based sys-
tems continue to evolve, the need to provide more sophisti-
cated strategies and tooling for addressing the compliance 
required for verification and validation for DO-178C and 

DO-278 will continue to grow. The networked aircraft will 
require the ability to not only ensure that a single LRU func-
tions correctly, but all LRUs also function correctly when 
the entire system is brought together. This means that the 
ability to isolate components at a software unit level, as 
well as a LRU level while simulating the remaining inter-
faces will be critical to achieving the quality requirements 
of the avionics industry. Furthermore, the artifacts from the 
verification and validation activity can be integrated into a 
continuous integration process to introduce modern ‘shift-
left’ concepts into the development of safety critical sys-
tems while ensuring compliance to the standards.           t
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[1]	 https://www.vectorcast.com/customers/testimonials/
lockheed-martin-uses-vector-softwares-vectorcast-
ada-c130j-do-178b-testing
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