
22 CAN Newsletter 1/2020

Continued development of comprehensive and struc-
tured testing methods and tools for electronically net-

worked aircraft and cabin systems is not only necessary
for economic reasons. With the recent safety-critical pilot
assistance systems such as Enhanced Vision and Run-
way Overrun Protection Systems or with "wireless" cabin
functions each requires appropriate testing strategies that
are compliant to the regulatory rigors assigned to them (i.e.
DO-178C). This article describes Vector’s approaches and
concepts.

The software in avionics and ground-based systems
are bounded by strong regulatory standards DO-178C
and DO-278 respectively. With failure regarded as “not an
option”, significant analysis and effort is put into the veri-
fication and validation of these systems. In fact, industry
wide, in a typical project fifty percent of the development
budget is used for structural testing the software according
to Federal Aviation Administration (FAA) DO-178C Level A
[1]. The ability to automate and simulate these systems can
greatly assist in reducing the overall effort, and hence the
implementation costs.

There are three major phases of verification and vali-
dation in avionics and ground-based software (Figure 1):
unit testing, integration testing, and system/functional test-
ing. In each phase, test cases need to be derived from
their appropriate level of requirements with full traceability
between both.

While the concepts and methodologies for low level
testing have been reasonably consistent over the years, the
introduction of more networked systems based on the CAN

and AFDX protocol, and the drive for code reuse, demands
innovations in the approach as to how the software should
be tested. To find good solutions, other industries can be
considered that have successfully deployed complex net-
worked systems, with rapid time to market demands and
highly critical functionality. An example is the automotive
market, with its drive by wire systems, autonomous vehi-
cle technology, 18 to 24 month development cycle and
CAN/Ethernet networked platforms.

The similarities in particular in CAN-based systems
make it possible to transfer proven concepts and pro-
cesses from the automotive industry into the avionics
domain. CAN is currently used in modern civil aircrafts like
A350 and Boeing 787 for systems such as environmen-
tal control, doors, galleys, smoke detection, potable water,
and de-icing. Furthermore young companies acting in the
emerging market of hybrid and full electric air vehicles for
new urban air mobility concepts rely on CAN-networks as
well.

Due to the specific challenges like long cables,
extreme environmental conditions, stringent lightning pro-
tection requirements, and long service life, adequate test
strategies at all test levels must be foreseen.

The approaches can be considered at three levels as
described in section 6.4.3 of the DO-178C standard: low
level testing, software integration testing, and hardware/
software integration testing. Finally, it is worth considering
how these can be coupled into a process which provides
greater agility as well as introducing shift-left strategies
into the development process.

Best in test

Due to the parallels
between systems from the
aerospace and automotive
worlds, it is possible to
transfer proven concepts and processes from the automotive industry to avionics.
Vector describes it’s approaches and concepts. (S

ou
rc

e:
 V

ec
to

r I
nf

or
m

at
ik)

CAN Newsletter magazine
www.can-newsletter.org/magazine

u	 Technical in-depth articles
u	 Market trends
u	 Detailed application reports

CAN Newsletter Online
www.can-newsletter.org

u	Product news
u	Brief application reports
u	 Tool news

CiA Product Guides
www.cia-productguides.org

u	 CANopen & J1939 services
u	 CAN tools & devices
u	 Protocol stacks

From experts to experts:
Address the CAN community

with your contributions.

publications@can-cia.org

Read
Write
Advertise

Low-level testing

This testing level is used to test the low-level requirements
and is usually accomplished with a series of unit tests that
allow the isolation of a single unit of source code. To test a
single unit in isolation, a huge amount of framework code
such as test drivers and stubs for dependencies (Figure 2)
must be generated. Ideally, this should be done automati-
cally with a tool that offers an intuitive and simple approach
for defining test scenarios. This meets the main require-
ments of section 6.4.2 “requirements-based test selec-
tion” and the sub-sections “normal range test cases” and
“robustness test cases” of the DO-178C standard. With the
growing need for code reuse, it is very likely the same unit
of source code might be used in several configurations.
Therefore, it is important that the definition of a test case
is not tightly coupled to the code and provides flexibility in
how they can be maintained as the software evolves over
time. Typically, the use of a data driven interface for the
definition of test cases has proven to be more maintainable
over time than a source code definition.

This approach also means that when the source code
and associated test cases are deployed in a continuous
delivery workflow, as changes are made to the code, the
testing framework can quickly be regenerated and the test
cases appropriately remapped. Where significant changes
have been made, these can be flagged for further review
without breaking the rest of the automated workflow.

A good example of this is the embedded software
testing platform Vectorcast, that automates testing activ-
ities across the software development lifecycle. It fully
supports testing on target or using the target simulator nor-
mally provided by the compiler vendor. Structural cover-
age from testing isolated components can be combined
with the coverage gathered during full integration testing to
present an aggregated view of coverage metrics.

Vectorcast test cases are maintained independent of
the source code for a data-driven test approach. This tech-
nique allows tests to be run on host, simulator, or directly on
the embedded target in a completely automated fashion.

Software integration testing

Software integration testing verifies the interrelationship of
components. This concept is also known as software-in-
the-loop (SIL) testing. The idea here is to bring the soft-
ware components together and test them without any of
the complexities of the underlying hardware. A critical
aspect of testing software during this phase is the ability
to simulate dependencies and interfaces in the integrated
unit that is under test.

To simulate this software conveniently, it is common
to use a host-based compiler like Visual Studio, GCC,
MinGW, etc. to run the code, and then once a level of con-
fidence has been achieved, the cross-compiler can then
also be used. Depending on the certification level for DO-
178C in Level C, B or A, certification credit for the activity
may only be permissible when done using the cross-com-
piler and running on the target.

In the low level testing framework, the collection of
software units can still only be tested via programming

https://www.can-cia.org/services/publications/

24 CAN Newsletter 1/2020

API calls. In this case the use of a test automation frame-
work like Vectorcast is ideal, as it will automatically build
the required drivers and stub any units that are outside
the units of interest automatically. There could also be an
opportunity to reuse some of the test cases from low level
testing for units that are higher in the call tree.

Alternatively, the software components to be tested
may be closely reliant on the underlying hardware, and
a more robust simulation of the underlying hardware is
required to correctly verify the software functionality in this
case.

Hardware/software integration testing

This type of testing is used to satisfy high level require-
ments and is performed on the target hardware using the
complete executable image. The challenge when testing
at this level is to provide enough external stimulation to the
line replaceable unit (LRU) such that it functions correctly.
The external simulation comes in various forms: logical
pins, avionics data network, modeling tools, etc. Addi-
tionally, because of the complex nature of the networks, it
should also be possible to easily extend or customize the
simulation interfaces quickly and easily.

An example system to validate an LRU at this level can
be setup using the tools VT System and CANoe (Figure 3).
The software and hardware combination CANoe and VT
System from Vector offers a test system that can be scaled
from simple test equipment at the developer workstation to

the highly automated HiL environment in the test lab. The
core idea of the VT System is to combine all the hardware
functions required for LRU testing in a modular system
seamlessly integrated into CANoe. The test hardware
covers the inputs and outputs, including the power supply
and network connections of a control unit or subsystem.
At each pin, the pin function according to stimulation,
measurement, load simulation, fault connection, and
switching between simulation and original sensors and
actuators are possible. These functions are so universally
designed that a once constructed test system can be used
for different LRUs.

In CANoe, in addition to the network environment,
the physical environment can also be simulated using
appropriate Matlab / Simulink models. A closed hardware-
in-the-loop simulation is just as possible as a simple,
manual stimulation without elaborate models. CANoe offers
the same flexibility in test automation. The tool Vteststudio
provides a modern authoring tool. The possibilities to
define tests range from programming in various languages
like the Vector own Capl and .NET/C# over defining simple
test procedures in tabular form to graphically noted test
models. It is used to define test procedures and allows the
developer to flexibly combine the different input methods.

Figure 1: The major phases of verification and validation
in avionics and ground-based software (Source: Vector
Informatik)

Figure 2: Low level testing framework to test a single
software unit in isolation – using framework code such as
test drivers and stubs for dependencies (Source: Vector
Informatik)

Figure 3: Example setup for simulating the environment
around an LRU (Source: Vector Informatik)

Figure 4: Change-based testing greatly reduces testing
time while ensuring testing completeness (Source: Vector
Informatik)

Sy
st

em
 d

es
ig

n

25CAN Newsletter 1/2020

The finished test sequences are stored as test units and
are then executed in CANoe.

CANoe executes the test cases and at the end of each
test run the system creates a detailed test report. Finally,
all threads from test and execution planning to execution
documentation converge in test data management. This
always ensures good traceability.

Bring it all together to enable a lean
continous integration platform

One of the biggest challenges with software development
today is the unintended propagation of defects or issues
through the development cycle of a system. These issues
can often be identified very early in the development cycle
but are missed because the software is merged without the
adequate verification and validation in place. To address
this quality issue, there are various discussions on the
topic of ‘shift left’, i.e. test earlier in the process. However,
in general the time required to rerun all low level, software
integration, and hardware/software integration tests can
be very time consuming. In some cases, a complete end
to end run of all test cases can take between three weeks
to as long as two months. This time frame does not fit the
rapid feedback that is required to provide developers with
early feedback of issues that they might have introduced at
the time of writing the software.

To address this challenge, the concept of change-
based testing (CBT) can be introduced. This method helps
organizations test faster and smarter by analyzing each
code change against all existing test cases and choosing
the sub-set of tests that are affected by the change (Figure
4). By running only this sub-set of tests, test execution
times are greatly reduced, and developers get immediate
feedback on the impact of their changes. This allows bugs
to be fixed immediately, when they are introduced, rather
than weeks later, during “full” testing.

By using a test automation platform like Vectorcast,
structural code coverage is collected from all levels of
testing like low level, software integration, and hardware/
software Integration. The ability to integrate the code
coverage reporting with software integration and hardware/
software integration tools like CANoe and VT System
provide a single perspective of the system’s aggregated
code coverage, and how a specific test directly contributed
to the overall code coverage. Thus, when a change is
made to the underlying software, the Vectorcast decision
engine quickly computes the impacted tests at all levels
and dispatches them appropriately – even when the test
is to be run through CANoe or VT System. Running a
subset of tests represents a significant time saving in the
execution time, and shortens the time taken to determine
an impact from a change made to a matter of hours with a
high level of confidence.

Conclusion

As the complexities of avionics and ground-based sys-
tems continue to evolve, the need to provide more sophisti-
cated strategies and tooling for addressing the compliance
required for verification and validation for DO-178C and

DO-278 will continue to grow. The networked aircraft will
require the ability to not only ensure that a single LRU func-
tions correctly, but all LRUs also function correctly when
the entire system is brought together. This means that the
ability to isolate components at a software unit level, as
well as a LRU level while simulating the remaining inter-
faces will be critical to achieving the quality requirements
of the avionics industry. Furthermore, the artifacts from the
verification and validation activity can be integrated into a
continuous integration process to introduce modern ‘shift-
left’ concepts into the development of safety critical sys-
tems while ensuring compliance to the standards. t

Authors

Dr. Arne Brehmer, Hans Quecke
Vector Informatik
info@vector.com
www.vector.com

[1]	 https://www.vectorcast.com/customers/testimonials/
lockheed-martin-uses-vector-softwares-vectorcast-
ada-c130j-do-178b-testing

References

Sy
st

em
 d

es
ig

n

mailto:info@vector.com
http://www.vector.com

	ad cia publications:

