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CAN-HG has been designed to meet two important 
requirements: Increasing the bandwidth and guard-

ing the network. There is a third requirement – and this 
requirement is the most important: the protocol enhance-
ment must be completely compatible and interoperable 
with Classical CAN. It must run on existing wiring with 
existing nodes using legacy CAN controllers in legacy 
micro-controllers. Any approach that requires every node 
on a bus to be re-developed for new micro-controllers is 
infeasible: it must be possible to freely mix Classical CAN 
and CAN-HG on the same network segment.

Increasing the throughput

The bit time in CAN is set 
according to the electrical 
characteristics of the phys-
ical CAN network and the 
dominant factor is the prop-
agation time across the bus: 
CAN arbitration requires that 
there is sufficient time for all 
nodes to signal a bit and for 
the signal to have reached all 
other nodes before the line 
is sampled. After arbitration 
has been decided this propa-
gation time constraint no lon-
ger applies and shorter bit 
times could be adopted. But 
a new frame format, in which 
there is a switch to faster sig-
naling causes compatibility 
problems: legacy CAN con-
trollers cannot follow the new 
frame format and would typ-
ically generate error frames 
and drive the transmit-
ter into bus-off state. CAN-
HG solves this problem with 
the notion of a carrier 
frame.

A carrier frame is a 
CAN frame with a payload of 
8 byte fixed to 30 00 00 00 
00 00 00 0016. After bit stuff-
ing this results in the follow-
ing bit pattern: 

This article describes the enhanced CAN protocol called CAN-HG and the features 
of the IC circuitry from Canis that implement it.
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1000001110000010000010000010000010000010000010
00001000001000001000001000001000001

The underlined bits are the DLC field and those in 
bold are stuff bits. The others are the payload bits in the 
8-byte CAN data field. The digital signal to the CAN trans-
ceiver (i.e. the TX pin from a CAN controller) is shown in 
Figure 1.

In a carrier frame are fourteen intervals of five domi-
nant bits (i.e. 00000) followed by a recessive bit. The pro-
posed CAN-HG protocol adds short-duration bits – called 
Fast Bits – within these intervals. The Fast Bits are placed 
so that all CAN controllers receiving the frame (includ-
ing the transmitter) see only the original signal. This is 

Figure 1: Carrier frame signals at the TX pin (Photo: Canis)

Figure 2: A 6-bit CAN interval beginning with a falling edge, recessive-to-dominant (Photo: 
Canis)
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Figure 3: CAN-HG frame format with Reserved, Payload, and CRC field (Photo: Canis)
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Figure 4: Interface circuitry with the Mercury chip (Photo: Canis)
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illustrated with a simplified example in Figure 2. It shows a 
6-bit interval beginning with a falling edge from a recessive 
bit (i.e. 1) and ending at the end of the final recessive bit, 
with the vertical arrows showing the sample points for each 
bit. The fast bits overwrite the original CAN signal but return 
to the original signal value around the sample point.

In ordinary circumstances it would not be possible to put 
arbitrary edges within a CAN bit: a falling edge initiates the 
re-synchronization process, which adjusts the sample point 
and this would then cause later bits to be misread, leading to 
a CAN error frame being raised and a failed frame transmis-
sion. But with CAN-HG the format of the carrier frame and 
the placement of fast bits are designed to exploit a feature of 
the re-synchronization: the first falling edge at the beginning 
of the interval is a re-synchronization point. All connected 
CAN controllers will perform sample point adjustments to 
offset from when this edge is detected. But further falling 
edges within the same bit (up to the sample point) will not 
result in another re-synchronization: this is prohibited by the 
Classical CAN protocol. Furthermore, falling edges after the 
first sample point and in subsequent bits in the interval (up 
until the sample point of the last bit in the interval) will also 
not result in a re-synchronization: the Classical CAN proto-
col prohibits this, if the previously sampled bit is dominant.

The first Fast Bit in an interval is placed a suitable 
time after the falling edge marking the start of the first bit 
in the interval. The delay is long enough to give all control-
lers time to have detected the edge because the CAN con-
troller state machine polls for the falling edge with its time 
quantum clock. Fast Bits are not located within a Keep Out 
zone around the sampling point to ensure that all connected 
CAN controllers see the original signal. The zone is large 
enough to encapsulate the earliest possible time any CAN 
controller could sample the bit to the latest possible time. 
This must account for jitter due to the time quantum poll-
ing period: the re-synchronization point – and therefore the 
sampling points – will vary relative to the falling edge at the 
start of the interval. It must also account for the different 
nominal sample points of each CAN controller: they typically 
will be clocked at different frequencies and have a different 
number of time quanta per bit.

The zone must also allow for the effects of clock 
drift in the oscillators of each CAN controller. CAN-HG 
allows each of the six Keep Out zones to be of a different 
duration to account for clock drift: for the first zone the 
clocks can have drifted only a small amount but by the 
last zone the clocks may have drifted by a significant 
amount. This is to allow more Fast Bits to be placed in the 
interval.

2.4 Encoding fast bits

Fast Bits are encoded with a simple NRZ asynchronous 
serial communication scheme. The falling edge at the 
start of the interval is taken as the end of a stop bit and 
used as a synchronization point and the first Fast Bit is 
located a fixed time offset from this point. The last Fast Bit 
before each of the first five Keep Out zones is designated 
a stop bit (and hence is always a logic 1) and the falling 
edge of this bit is used to resynchronize the fast bit 
timing.

https://www.wago.com/de/automatisierungstechnik/sps-entdecken/pfc200?utm_source=de_press&utm_medium=de_onlinewerbung&utm_content=ctrl_cia_nl&utm_campaign=AutomationControls
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CAN-HG also supports bit stretching: it allows the 
duration of a Fast Bit to vary based on the time since the 
last stop bit falling edge so that bits closer to the sync point 
can take advantage of the lower clock drift and be shorter 
than ones further away. This can significantly increase the 
size of the overall frame payload.

The following Fast Bit parameter settings configure 
the CAN-HG network:
◆ The skip times from the falling edge of a stop bit (or the 

start of the interval) to a Fast Bit
◆ The number of subsequent Fast Bits (including a 

subsequent stop bit)
◆ The initial duration of the first Fast Bit after a stop bit
◆ The bit stretching factor to add to the duration of each 

subsequent Fast Bit
◆ The offset to Fast Bit sampling to compensate for 

the additional CAN transceiver dominant-recessive 
propagation delay

◆ The total number CAN-HG payload bytes (all 
CAN-HG frames within a network have the same 
fixed payload size)

A set of CAN-HG Fast Bit parameters can be checked 
for validity against a given set of network properties 
(oscillator accuracy, CAN sample point ranges, etc.). It is a 
simple search problem to find a set of parameters that pass 
the validity checks. Payloads of 120 bytes are achievable 
for common network properties.

A CAN-HG frame has the following format: All fields 
are an 8-bit multiple and are fixed in size. The Reserved 
field has a fixed length of 32 bit. It is reserved for future 
usage (it is intended that it will contain sequence number 
and timestamp information generated automatically by the 
CAN-HG hardware). The Payload field is of fixed but con-
figurable size, depending on the parameters set for the 
network (as described above).

The CRC field has a length of 24 bit, with a polynomial 
of 5D6DCB16 and an initial value of FEDCBA16 (the same 
as the Flexray CRC), which gives a Hamming Distance 
of 6 for frames up to 2024 bit. The CRC is calculated 
over the CAN-ID of the carrier frame and the Reserved 
and Payload fields of the CAN-HG frame. There is a 
long-standing problem where the CRC of CAN has a 
Hamming Distance of just 2 in certain pathological cases 

due to stuff bits. This is addressed in CAN-HG: the checking 
in CAN-HG not only checks the CRC-24 but also checks 
that the carrier frame is of the required fixed format. Early 
computational experiments suggest that a carrier frame 
consequently has an effective Hamming Distance of 7. A 
CAN-HG error is handled in the same way as for the CAN 
protocol: an error frame is generated that destroys the carrier 
frame and triggers the normal CAN error recovery process.

Guarding the network

There are two major properties of any secure messaging 
scheme:
◆ Authenticity: To act on the contents of a frame, the re-

ceiver must be sure the frame came from the genuine 
sender.

◆ Secrecy: The contents of the frame must be kept secret 
and shared only with the intended recipients.

Authenticity is important because it allows a system 
to be built in which each node can trust the contents of 
the frames and does not have to construct elaborate (and 
potentially faulty) protocols for checking the data. Secrecy 
is also useful, not just for protecting sensitive data (per-
haps the firmware of a node during download) but also 
because it makes it harder to reverse engineer or tamper 
with a system.

A common way to obtain authenticity and secrecy 
is with cryptographic protocols. But there are significant 
costs to this: there is the complexity and overheads within 
each node of including cryptographic protocols (code 
space, RAM, CPU time), the overheads on the bus (extra 
data needs to be sent to authenticate frames and to pre-
vent replay attacks and there are synchronization delays 
that add to latencies) and the challenge of distributing and 
storing secret keys in every node.

CAN-HG provides in hardware both frame authenticity 
(for CAN frames as well as CAN-HG frames) and frame 
secrecy.

CAN-HG provides frame authentication by means of 
anti-spoofing: preventing spoofed frames from reaching 
nodes. The anti-spoofing features apply at the CAN 
level: all CAN frames are protected, not just CAN-HG 
frames.

Figure 5: Logic analyzer trace of the first part of a CAN carrier frame (Photo: Canis)

Figure 6: Logic analyzer trace of a received CAN-HG frame (Photo: Canis)
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The core concept of CAN-HG bus guarding is the 
authorized frames list: it is a secure list inside the CAN-HG 
hardware that lists the CAN frames that the host node is 
authorized to send and the CAN-HG frames that the host 
node is authorized to receive.

An outgoing CAN frame from the host node is checked 
against the list and if it is not on the list of transmitted 
CAN frames then the frame is blocked from transmission. 
This ensures that if any node with CAN-HG hardware is 
hijacked it cannot send spoofed CAN frames on the bus.

An incoming CAN frame to the host node is checked 
against the list and if it is on the list of transmitted CAN 
frames then the CAN-HG hardware destroys the CAN 
frame. A frame is destroyed in the same way as for a 
faulty CAN-HG frame or carrier frame: an error frame is 
generated that destroys the frame and triggers the normal 
CAN error recovery process. This ensures that all nodes 
that normally receive this frame from the host node are 
protected against spoofing of that frame. The above means 
that CAN-HG provides protection to CAN nodes that don’t 
include CAN-HG hardware.

CAN-HG supports secrecy for CAN-HG frames. 
The authorized frames list has entries for the identifiers 
of carrier frames containing CAN-HG payloads that the 
host node can receive. A CAN-HG frame payload is only 
decoded and passed to the host node if the incoming 
frame appears on this list. Unauthorized nodes – including 
those without CAN-HG hardware – will see only the carrier 
frame.

The first CAN-HG circuitry

The Mercury chip by Canis is a small stand-alone inte-
grated circuit that is placed between the micro-control-
ler with on-chip CAN module and the CAN transceiv-
er. The first demonstrator system built by Canis uses 
the STM32F405 micro-controller by ST-Microelectron-
ics, which comprises a bxCAN module. The CAN TX and 
CAN RX pins are routed into the Mercury chip, which modi-
fies the bus signals and input those into the CAN transceiv-
er. By default the CAN TX signal from the micro-controller 
is reflected to the transceiver, and the CAN RX signal from 
the transceiver is reflected to the micro-controller.

The Mercury chip is interfaced to the micro-controller 
via SPI as an SPI slave. As well as the four SPI lines (SS, 
SCK, MOSI, MISO) it includes an interrupt line to request 
servicing from the micro-controller. The SPI commands 
are structured so that most of the handling of SPI can be 
done by DMA in the micro-controller. The Mercury chip 
does not contain a complete CAN controller: all CAN frame 
handling is done by the CAN module in the micro-control-
ler, including the generation of carrier frames. The Mercury 
chip contains a CAN receive state machine that is used to 
drive the CAN-HG protocol.

When the micro-controller sends a CAN frame this is 
detected by the Mercury chip and when the ID part has been 
received it is matched against the authorized frames list (by 
applying the mask and must-match values for each mem-
ber of the list). If none of the entries match then the frame is 
being transmitted illegally and is destroyed: by pulling the 
TX line to the transceiver to dominant for six CAN bit times 

https://esd.eu/en/content/products
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(this is a CAN error 
flag and causes the 
frame to be aban-
doned and arbitra-
tion to be restarted 
in accordance with 
the Classical CAN 
protocol).

If there is a 
match in the autho-
rized frames list and 
the frame is marked 
as carrier frame 
then the Mercury 
chip raises an inter-
rupt to request that 
the micro-controller 

supplies the CAN-HG payload data for the carrier frame. 
The micro-controller queries over SPI the identity of the 
carrier frame and the Mercury chip returns a 6-bit index 
into the authorized frames list to indicate which frame 
matched. From this, the micro-controller can determine the 
CAN-HG payload and push it over SPI. The Mercury chip 
injects the payload data into the CAN-HG Fast Bits stream 
in the carrier frame as it continues to be transmitted by the 
micro-controller.

The logic analyzer trace in Figure 3 illustrates this for 
a carrier CAN frame with an 11-bit ID of 12316. The signal 
HCANTX1 is the CAN TX signal from the micro-controller, 
TCANTX1 is the signal from the Mercury chip to the CAN 
transceiver, IRQ1 is the interrupt line from the Mercury chip 
to the micro-controller and SCK1 is the SPI clock from the 
micro-controller (the SPI master). The trace shows how the 
interrupt is generated after the ID field and how the Mer-
cury chip sends the Fast Bits representing the Reserved 
field while the micro-controller engages in an SPI trans-
action to push payload data (the SCK1 signal shows SPI 
activity).

Incoming CAN frames are handled as normal by the 
on-chip CAN module in the micro-controller: the CAN RX 
signal is passed through the Mercury chip from the CAN 
transceiver. The ID of the CAN frame is checked against 
the authorized frames list and if the frame is being received, 
but matches against a transmitted frame in the list, then 
the frame is destroyed by the Mercury chip. An incoming 
frame that matches against an entry in the list that marks 
it as a carrier frame triggers the CAN-HG frame reception 
process: the Fast Bits are decoded and the Reserved field 
is stored, the payload is placed in an internal buffer and 
the CAN-HG CRC checked. If the CRC does not match 
or the incoming frame is not a well-formed carrier 
frame (i.e. is not 8 byte or does not have a payload of 
30 00 00 00 00 00 00 0016), then the frame is assumed 
to be corrupted and is destroyed. If a CAN-HG frame is 
received correctly then an interrupt is raised and the micro-
controller extracts the payload over SPI. The CAN-HG pay-
load is provisional: it must be tied back to the reception 
of the carrier frame. If the payload is received before the 
carrier frame completes it is possible that an error subse-
quently occurs before the carrier frame is received and the 
frame is destroyed and retransmitted according to the CAN 

Figure 7: The Mercury chip is on the 
right; the chip on the left is a CAN 
transceiver  (Photo: Canis)

protocol. The micro-controller CAN-HG driver marks the 
payload as received only when the corresponding carrier 
frame has been received.

The logic analyzer trace in Figure 4 illustrates the 
reception of a CAN-HG frame. The signal IRQ2 is the inter-
rupt line at the receiver and SCK2 is the SPI master clock 
at the receiver. The trace shows how the CAN-HG payload 
is received before the carrier frame. With the specific net-
work parameters in the example the CAN-HG frame fits 
into the first thirteen carrier frame intervals and the last 
interval is not used. The carrier frame is received some 
time after the CAN-HG frame is received and its payload 
uploaded to the micro-controller over SPI.

The shown Revision A version of the Mercury chip 
comes in a 36-pin BGA package.

The Mercury chip supports an authorized frames list 
of 64 entries with match/don’t care masking over CAN IDs. 
The SPI interface can be clocked at up to 20 MHz. The 
CAN-HG payload size is fixed at 32 byte. Future revisions 
to the silicon are planned, including performance and 
security enhancements. For high-volume applications the 
Mercury functionality could be integrated into a CAN trans-
ceiver package or a micro-controller.

Deployment

CAN-HG was designed to make deployment easy and 
CAN and CAN-HG traffic can be freely mixed on the bus 
and so the deployment of CAN-HG can be focused on 
where it matters most. This means there is no need to 
update the hardware and software across all nodes on a 
network. Depending on the threat model for a network only 
a subset of nodes needs CAN-HG hardware: only frames 
that need protection from spoofing need hardware to 
enforce it. And the performance benefits of CAN-HG can 
be applied first in only the nodes with the highest band-
width demands. An existing network design needs only 
minimal changes to obtain security and performance ben-
efits of CAN-HG.

Mercury was designed to make the adoption of 
CAN-HG even easier: it does not require changes to 
micro-controller hardware or CAN controller software. 
A node can continue to use the same silicon and the 
same software drivers and continue to exploit the specific 
features of a specific CAN controller (for example, making 
use of hardware support for Time-Triggered CAN). If a node 
requires just the security features of CAN-HG, then there 
are no software changes required: a configured Mercury 
will destroy spoofed frames without any intervention by the 
micro-controller. And the higher performance of CAN-HG 
can be obtained just by adding Mercury SPI drivers.        t 
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