
4 CAN Newsletter 3/2018

CAN-HG has been designed to meet two important
requirements: Increasing the bandwidth and guard-

ing the network. There is a third requirement – and this
requirement is the most important: the protocol enhance-
ment must be completely compatible and interoperable
with Classical CAN. It must run on existing wiring with
existing nodes using legacy CAN controllers in legacy
micro-controllers. Any approach that requires every node
on a bus to be re-developed for new micro-controllers is
infeasible: it must be possible to freely mix Classical CAN
and CAN-HG on the same network segment.

Increasing the throughput

The bit time in CAN is set
according to the electrical
characteristics of the phys-
ical CAN network and the
dominant factor is the prop-
agation time across the bus:
CAN arbitration requires that
there is sufficient time for all
nodes to signal a bit and for
the signal to have reached all
other nodes before the line
is sampled. After arbitration
has been decided this propa-
gation time constraint no lon-
ger applies and shorter bit
times could be adopted. But
a new frame format, in which
there is a switch to faster sig-
naling causes compatibility
problems: legacy CAN con-
trollers cannot follow the new
frame format and would typ-
ically generate error frames
and drive the transmit-
ter into bus-off state. CAN-
HG solves this problem with
the notion of a carrier
frame.

A carrier frame is a
CAN frame with a payload of
8 byte fixed to 30 00 00 00
00 00 00 0016. After bit stuff-
ing this results in the follow-
ing bit pattern:

This article describes the enhanced CAN protocol called CAN-HG and the features
of the IC circuitry from Canis that implement it.

CAN protocol enhancementCAN protocol enhancement

1000001110000010000010000010000010000010000010
00001000001000001000001000001000001

The underlined bits are the DLC field and those in
bold are stuff bits. The others are the payload bits in the
8-byte CAN data field. The digital signal to the CAN trans-
ceiver (i.e. the TX pin from a CAN controller) is shown in
Figure 1.

In a carrier frame are fourteen intervals of five domi-
nant bits (i.e. 00000) followed by a recessive bit. The pro-
posed CAN-HG protocol adds short-duration bits – called
Fast Bits – within these intervals. The Fast Bits are placed
so that all CAN controllers receiving the frame (includ-
ing the transmitter) see only the original signal. This is

Figure 1: Carrier frame signals at the TX pin (Photo: Canis)

Figure 2: A 6-bit CAN interval beginning with a falling edge, recessive-to-dominant (Photo:
Canis)

CAN signal

CAN bits

CAN-HG signal ‘Keep Out’ zones

CAN bit sample points

0 0 0 0 0 1

Figure 3: CAN-HG frame format with Reserved, Payload, and CRC field (Photo: Canis)

Reserved
(32 bits)

Payload
(Fixed number of bytes)

CRC
(24 bits)

Pr
ot

oc
ol

s

Figure 4: Interface circuitry with the Mercury chip (Photo: Canis)

Host microcontroller

CAN
controller

SPI

CAN TX CAN TX CAN H

CAN LCAN RXCAN RX

Transceiver

CAN bus

CAN YOU IMAGINE
THE POSSIBILITIES?
WE CAN!

• High processing speed
• Programmable with e!COCKPIT

(based on CODESYS 3)

www.wago.com/pfc200

The PFC200 Controller from
WAGO – Our Most Powerful
Line of Controllers

Now even more
capacity with the

2nd generation

illustrated with a simplified example in Figure 2. It shows a
6-bit interval beginning with a falling edge from a recessive
bit (i.e. 1) and ending at the end of the final recessive bit,
with the vertical arrows showing the sample points for each
bit. The fast bits overwrite the original CAN signal but return
to the original signal value around the sample point.

In ordinary circumstances it would not be possible to put
arbitrary edges within a CAN bit: a falling edge initiates the
re-synchronization process, which adjusts the sample point
and this would then cause later bits to be misread, leading to
a CAN error frame being raised and a failed frame transmis-
sion. But with CAN-HG the format of the carrier frame and
the placement of fast bits are designed to exploit a feature of
the re-synchronization: the first falling edge at the beginning
of the interval is a re-synchronization point. All connected
CAN controllers will perform sample point adjustments to
offset from when this edge is detected. But further falling
edges within the same bit (up to the sample point) will not
result in another re-synchronization: this is prohibited by the
Classical CAN protocol. Furthermore, falling edges after the
first sample point and in subsequent bits in the interval (up
until the sample point of the last bit in the interval) will also
not result in a re-synchronization: the Classical CAN proto-
col prohibits this, if the previously sampled bit is dominant.

The first Fast Bit in an interval is placed a suitable
time after the falling edge marking the start of the first bit
in the interval. The delay is long enough to give all control-
lers time to have detected the edge because the CAN con-
troller state machine polls for the falling edge with its time
quantum clock. Fast Bits are not located within a Keep Out
zone around the sampling point to ensure that all connected
CAN controllers see the original signal. The zone is large
enough to encapsulate the earliest possible time any CAN
controller could sample the bit to the latest possible time.
This must account for jitter due to the time quantum poll-
ing period: the re-synchronization point – and therefore the
sampling points – will vary relative to the falling edge at the
start of the interval. It must also account for the different
nominal sample points of each CAN controller: they typically
will be clocked at different frequencies and have a different
number of time quanta per bit.

The zone must also allow for the effects of clock
drift in the oscillators of each CAN controller. CAN-HG
allows each of the six Keep Out zones to be of a different
duration to account for clock drift: for the first zone the
clocks can have drifted only a small amount but by the
last zone the clocks may have drifted by a significant
amount. This is to allow more Fast Bits to be placed in the
interval.

2.4 Encoding fast bits

Fast Bits are encoded with a simple NRZ asynchronous
serial communication scheme. The falling edge at the
start of the interval is taken as the end of a stop bit and
used as a synchronization point and the first Fast Bit is
located a fixed time offset from this point. The last Fast Bit
before each of the first five Keep Out zones is designated
a stop bit (and hence is always a logic 1) and the falling
edge of this bit is used to resynchronize the fast bit
timing.

https://www.wago.com/de/automatisierungstechnik/sps-entdecken/pfc200?utm_source=de_press&utm_medium=de_onlinewerbung&utm_content=ctrl_cia_nl&utm_campaign=AutomationControls

6 CAN Newsletter 3/2018

CAN-HG also supports bit stretching: it allows the
duration of a Fast Bit to vary based on the time since the
last stop bit falling edge so that bits closer to the sync point
can take advantage of the lower clock drift and be shorter
than ones further away. This can significantly increase the
size of the overall frame payload.

The following Fast Bit parameter settings configure
the CAN-HG network:
◆ The skip times from the falling edge of a stop bit (or the

start of the interval) to a Fast Bit
◆ The number of subsequent Fast Bits (including a

subsequent stop bit)
◆ The initial duration of the first Fast Bit after a stop bit
◆ The bit stretching factor to add to the duration of each

subsequent Fast Bit
◆ The offset to Fast Bit sampling to compensate for

the additional CAN transceiver dominant-recessive
propagation delay

◆ The total number CAN-HG payload bytes (all
CAN-HG frames within a network have the same
fixed payload size)

A set of CAN-HG Fast Bit parameters can be checked
for validity against a given set of network properties
(oscillator accuracy, CAN sample point ranges, etc.). It is a
simple search problem to find a set of parameters that pass
the validity checks. Payloads of 120 bytes are achievable
for common network properties.

A CAN-HG frame has the following format: All fields
are an 8-bit multiple and are fixed in size. The Reserved
field has a fixed length of 32 bit. It is reserved for future
usage (it is intended that it will contain sequence number
and timestamp information generated automatically by the
CAN-HG hardware). The Payload field is of fixed but con-
figurable size, depending on the parameters set for the
network (as described above).

The CRC field has a length of 24 bit, with a polynomial
of 5D6DCB16 and an initial value of FEDCBA16 (the same
as the Flexray CRC), which gives a Hamming Distance
of 6 for frames up to 2024 bit. The CRC is calculated
over the CAN-ID of the carrier frame and the Reserved
and Payload fields of the CAN-HG frame. There is a
long-standing problem where the CRC of CAN has a
Hamming Distance of just 2 in certain pathological cases

due to stuff bits. This is addressed in CAN-HG: the checking
in CAN-HG not only checks the CRC-24 but also checks
that the carrier frame is of the required fixed format. Early
computational experiments suggest that a carrier frame
consequently has an effective Hamming Distance of 7. A
CAN-HG error is handled in the same way as for the CAN
protocol: an error frame is generated that destroys the carrier
frame and triggers the normal CAN error recovery process.

Guarding the network

There are two major properties of any secure messaging
scheme:
◆ Authenticity: To act on the contents of a frame, the re-

ceiver must be sure the frame came from the genuine
sender.

◆ Secrecy: The contents of the frame must be kept secret
and shared only with the intended recipients.

Authenticity is important because it allows a system
to be built in which each node can trust the contents of
the frames and does not have to construct elaborate (and
potentially faulty) protocols for checking the data. Secrecy
is also useful, not just for protecting sensitive data (per-
haps the firmware of a node during download) but also
because it makes it harder to reverse engineer or tamper
with a system.

A common way to obtain authenticity and secrecy
is with cryptographic protocols. But there are significant
costs to this: there is the complexity and overheads within
each node of including cryptographic protocols (code
space, RAM, CPU time), the overheads on the bus (extra
data needs to be sent to authenticate frames and to pre-
vent replay attacks and there are synchronization delays
that add to latencies) and the challenge of distributing and
storing secret keys in every node.

CAN-HG provides in hardware both frame authenticity
(for CAN frames as well as CAN-HG frames) and frame
secrecy.

CAN-HG provides frame authentication by means of
anti-spoofing: preventing spoofed frames from reaching
nodes. The anti-spoofing features apply at the CAN
level: all CAN frames are protected, not just CAN-HG
frames.

Figure 5: Logic analyzer trace of the first part of a CAN carrier frame (Photo: Canis)

Figure 6: Logic analyzer trace of a received CAN-HG frame (Photo: Canis)

Pr
ot

oc
ol

s

The core concept of CAN-HG bus guarding is the
authorized frames list: it is a secure list inside the CAN-HG
hardware that lists the CAN frames that the host node is
authorized to send and the CAN-HG frames that the host
node is authorized to receive.

An outgoing CAN frame from the host node is checked
against the list and if it is not on the list of transmitted
CAN frames then the frame is blocked from transmission.
This ensures that if any node with CAN-HG hardware is
hijacked it cannot send spoofed CAN frames on the bus.

An incoming CAN frame to the host node is checked
against the list and if it is on the list of transmitted CAN
frames then the CAN-HG hardware destroys the CAN
frame. A frame is destroyed in the same way as for a
faulty CAN-HG frame or carrier frame: an error frame is
generated that destroys the frame and triggers the normal
CAN error recovery process. This ensures that all nodes
that normally receive this frame from the host node are
protected against spoofing of that frame. The above means
that CAN-HG provides protection to CAN nodes that don’t
include CAN-HG hardware.

CAN-HG supports secrecy for CAN-HG frames.
The authorized frames list has entries for the identifiers
of carrier frames containing CAN-HG payloads that the
host node can receive. A CAN-HG frame payload is only
decoded and passed to the host node if the incoming
frame appears on this list. Unauthorized nodes – including
those without CAN-HG hardware – will see only the carrier
frame.

The first CAN-HG circuitry

The Mercury chip by Canis is a small stand-alone inte-
grated circuit that is placed between the micro-control-
ler with on-chip CAN module and the CAN transceiv-
er. The first demonstrator system built by Canis uses
the STM32F405 micro-controller by ST-Microelectron-
ics, which comprises a bxCAN module. The CAN TX and
CAN RX pins are routed into the Mercury chip, which modi-
fies the bus signals and input those into the CAN transceiv-
er. By default the CAN TX signal from the micro-controller
is reflected to the transceiver, and the CAN RX signal from
the transceiver is reflected to the micro-controller.

The Mercury chip is interfaced to the micro-controller
via SPI as an SPI slave. As well as the four SPI lines (SS,
SCK, MOSI, MISO) it includes an interrupt line to request
servicing from the micro-controller. The SPI commands
are structured so that most of the handling of SPI can be
done by DMA in the micro-controller. The Mercury chip
does not contain a complete CAN controller: all CAN frame
handling is done by the CAN module in the micro-control-
ler, including the generation of carrier frames. The Mercury
chip contains a CAN receive state machine that is used to
drive the CAN-HG protocol.

When the micro-controller sends a CAN frame this is
detected by the Mercury chip and when the ID part has been
received it is matched against the authorized frames list (by
applying the mask and must-match values for each mem-
ber of the list). If none of the entries match then the frame is
being transmitted illegally and is destroyed: by pulling the
TX line to the transceiver to dominant for six CAN bit times

https://esd.eu/en/content/products

8 CAN Newsletter 3/2018

(this is a CAN error
flag and causes the
frame to be aban-
doned and arbitra-
tion to be restarted
in accordance with
the Classical CAN
protocol).

If there is a
match in the autho-
rized frames list and
the frame is marked
as carrier frame
then the Mercury
chip raises an inter-
rupt to request that
the micro-controller

supplies the CAN-HG payload data for the carrier frame.
The micro-controller queries over SPI the identity of the
carrier frame and the Mercury chip returns a 6-bit index
into the authorized frames list to indicate which frame
matched. From this, the micro-controller can determine the
CAN-HG payload and push it over SPI. The Mercury chip
injects the payload data into the CAN-HG Fast Bits stream
in the carrier frame as it continues to be transmitted by the
micro-controller.

The logic analyzer trace in Figure 3 illustrates this for
a carrier CAN frame with an 11-bit ID of 12316. The signal
HCANTX1 is the CAN TX signal from the micro-controller,
TCANTX1 is the signal from the Mercury chip to the CAN
transceiver, IRQ1 is the interrupt line from the Mercury chip
to the micro-controller and SCK1 is the SPI clock from the
micro-controller (the SPI master). The trace shows how the
interrupt is generated after the ID field and how the Mer-
cury chip sends the Fast Bits representing the Reserved
field while the micro-controller engages in an SPI trans-
action to push payload data (the SCK1 signal shows SPI
activity).

Incoming CAN frames are handled as normal by the
on-chip CAN module in the micro-controller: the CAN RX
signal is passed through the Mercury chip from the CAN
transceiver. The ID of the CAN frame is checked against
the authorized frames list and if the frame is being received,
but matches against a transmitted frame in the list, then
the frame is destroyed by the Mercury chip. An incoming
frame that matches against an entry in the list that marks
it as a carrier frame triggers the CAN-HG frame reception
process: the Fast Bits are decoded and the Reserved field
is stored, the payload is placed in an internal buffer and
the CAN-HG CRC checked. If the CRC does not match
or the incoming frame is not a well-formed carrier
frame (i.e. is not 8 byte or does not have a payload of
30 00 00 00 00 00 00 0016), then the frame is assumed
to be corrupted and is destroyed. If a CAN-HG frame is
received correctly then an interrupt is raised and the micro-
controller extracts the payload over SPI. The CAN-HG pay-
load is provisional: it must be tied back to the reception
of the carrier frame. If the payload is received before the
carrier frame completes it is possible that an error subse-
quently occurs before the carrier frame is received and the
frame is destroyed and retransmitted according to the CAN

Figure 7: The Mercury chip is on the
right; the chip on the left is a CAN
transceiver (Photo: Canis)

protocol. The micro-controller CAN-HG driver marks the
payload as received only when the corresponding carrier
frame has been received.

The logic analyzer trace in Figure 4 illustrates the
reception of a CAN-HG frame. The signal IRQ2 is the inter-
rupt line at the receiver and SCK2 is the SPI master clock
at the receiver. The trace shows how the CAN-HG payload
is received before the carrier frame. With the specific net-
work parameters in the example the CAN-HG frame fits
into the first thirteen carrier frame intervals and the last
interval is not used. The carrier frame is received some
time after the CAN-HG frame is received and its payload
uploaded to the micro-controller over SPI.

The shown Revision A version of the Mercury chip
comes in a 36-pin BGA package.

The Mercury chip supports an authorized frames list
of 64 entries with match/don’t care masking over CAN IDs.
The SPI interface can be clocked at up to 20 MHz. The
CAN-HG payload size is fixed at 32 byte. Future revisions
to the silicon are planned, including performance and
security enhancements. For high-volume applications the
Mercury functionality could be integrated into a CAN trans-
ceiver package or a micro-controller.

Deployment

CAN-HG was designed to make deployment easy and
CAN and CAN-HG traffic can be freely mixed on the bus
and so the deployment of CAN-HG can be focused on
where it matters most. This means there is no need to
update the hardware and software across all nodes on a
network. Depending on the threat model for a network only
a subset of nodes needs CAN-HG hardware: only frames
that need protection from spoofing need hardware to
enforce it. And the performance benefits of CAN-HG can
be applied first in only the nodes with the highest band-
width demands. An existing network design needs only
minimal changes to obtain security and performance ben-
efits of CAN-HG.

Mercury was designed to make the adoption of
CAN-HG even easier: it does not require changes to
micro-controller hardware or CAN controller software.
A node can continue to use the same silicon and the
same software drivers and continue to exploit the specific
features of a specific CAN controller (for example, making
use of hardware support for Time-Triggered CAN). If a node
requires just the security features of CAN-HG, then there
are no software changes required: a configured Mercury
will destroy spoofed frames without any intervention by the
micro-controller. And the higher performance of CAN-HG
can be obtained just by adding Mercury SPI drivers. t

Author

Dr. Ken Tindell
Canis Automotive Labs
info@canislabs.com
www.canislabs.com

Pr
ot

oc
ol

s

mailto:info@canislabs.com
http://www.canislabs.com

http://www.intrepidcs.com/vcan4

	Advertisement: Wago:
	Advertisement: esd:
	Advertisement: Intrepid:

