
32 CAN Newsletter 3/2021

The increasing complexity and size of CANopen (FD) networks create new 
challenges on how to decide which node-ID should be used. This article 
discusses a theoretical approach how devices in a CANopen (FD) network  
could negotiate their node-ID by themselves. 

Approach for node-ID negotiation in CANopen

The assignment of a node-ID to a CANopen device is an 
essential requirement. Without a node-ID a CANopen de-

vice is unable to communicate over services defined in CiA 
301 and CiA 1301. Without a valid node-ID in the range of 1 
to 127, a CANopen device would never leave the NMT (net-
work management) sub-state reset communication. Since 
the node-ID has to be unique in the network, there has to be 
a way to configure the node-ID value. Neither CiA 301 nor 
CiA 1301 specify a way to configure this value. There are var-
ious solutions on the market how this can be achieved.

Some manufactures use hardware solutions on their 
devices, such as dip- or rotary-switches, or encode plugs. 
Others, use some kind of proprietary software configuration. 
All of these solutions need more or less knowledge about 
the system where the devices are integrated. Another way to 
configure the node-ID is specified in the document CiA 305, 
CANopen layer setting services (LSS). This specification 
describes services and protocols for identifying CANopen 
devices and assigning node-IDs, which can be used by a so 
called LSS manager (formerly named LSS master) or some 
configuration tool.

The CANopen application profile for building door 
control, CiA 416, also specifies a procedure for claiming 
node-IDs by the devices themselves. But besides that, this 
procedure is slow, it is also patented. The following theoreti-
cal approach for negotiation of node-IDs introduced by the 
engineers of Emotas Embedded Communication should be a 
starting point how to overcome most of the disadvantages of 
the other solutions.

Systems without a superordinated manager

Some systems are designed very flexible. That means that a 
system could be built with different combinations of devices, 
exactly meeting the needed requirements.

Sometimes, it could be enough that only two devices 
are needed, sometimes much more, and sometimes there 
are multiple of the same device type in a network. An exam-
ple of such kind of systems are heating systems based on 
CANopen. They can include multiple sensors and controllers 
depending on location and size where the system is installed.

When creating the devices for such a system, it is not 
clear which kind of device could be unique in the system, so 
it can operate as a CANopen manager. The CANopen man-
ager is the device with NMT manager functionality plus addi-
tional functionality, for example, the LSS manager.

One way to assign node-IDs without an LSS manager is 
when integrating the system. But this leads to a static system, 

without a real plug-and-play possibility. And, in case some 
parts are added, or have to be replaced, an unused node-
ID has to be assigned to the replaced part, which might be 
impossible for a service technician.

Another example are battery clusters, which are capa-
ble of plug and play. The only devices in this network are 
the batteries themselves. They are physically all of the same 
device type and have the same software. In such a system, 
the node-ID is irrelevant to the system, but is required for 
CANopen communication.

Systems with a superordinated manager

In generic CANopen systems with a superordinated manager, 
there are also possibilities that the actual distribution of the 
node-IDs is not relevant for the functionality of the system.

Examples are the CANopen application profile for 
energy management systems, CiA 454, or the CANopen 
application profile for special-purpose car add-on devices, 
CiA 447. These specifications use the LSS Fastscan 
procedure, defined in CiA 305, to detect devices and to 
assign node-IDs to them. With LSS Fastscan devices can 
be only detected one after another, and in the worst case 
of completely unknown devices it will take 128 messages to 
verify every single bit of the CANopen LSS address. With a 
response-timeout of 10 ms, it would take 1,28 s to detect one 
single device.

New approach

The idea behind this approach is that, in systems which do 
not depend on the node-ID distribution, the devices negotiate 
their node-ID themselves. The idea is not new, for example 
in the document J1939-81 of the SAE (Society of Automo-
tive Engineers), there is a description of a so-called address 
claim procedure. In this procedure, the devices in a CAN-
based network negotiate the addresses (node-IDs), depend-
ing on values of the Name field. The problem here is that this 
procedure uses the 8-byte data field of the CAN frame. This 
led to the fact, that, in case two or more devices are claiming 
the same address, it could lead to collisions on the CAN net-
work. In our approach, we are trying to avoid this by not using 
the data field: All the information exchanged between devices 
are encoded in the identifier field.
The main requirements for this procedure are that the soft-
ware of the devices is able to send and receive CAN data 
frames in classical extended frame format (CEFF). Because 
most modern CAN FD controllers support sending and  

C
AN

op
en

https://can-newsletter.org/engineering/system-design/210607_canopen-fd-devices-identification-via-lss_cnlm_cia


33CAN Newsletter 3/2021

receiving this kind of data frames, this approach works in 
CANopen FD as well. It is also important that the software 
can distinguish between extended and basic frame for-
mats.

Usage of the CAN-Identifier

The CAN-Identifier (CAN-ID) of an extended data frame has 
29 bits available. For our approach we only need 13 bits. The 
least significant 13 bits are used for the node-ID negotiation. 
The 13 bits are divided into two fields, the least significant  
8 bits are used as data field, and the most significant  
5 bits as data code. Table 1 illustrates the usage of the  
CAN-ID.

Bit 28 to 13 Bit 12 to 8 Bit 7 to 0
reserved Data code Data field

Using 13 bit of the 29 bits of an extended CAN-ID 
means that 44 % of the bits are required, but the following 

formula shows that only 0,0015 % of all possible extended 
CAN-IDs are reserved for this service:

The data code defines the meaning of the data field 
content. If the most significant bit is set to 1, the data 
field contains parts of the CANopen object 1018h, identity 
object. For this procedure to work, all four sub-indices are 
required. Table 2 shows which part of the identity object 
1018h is transmitted with which data code.

Data code 1018h data
10000b Sub-index 1, bit 0 to 7
10001b Sub-index 1, bit 8 to 15
10010b Sub-index 1, bit 16 to 23
10011b Sub-index 1, bit 24 to 31
10100b Sub-index 2, bit 0 to 7
10101b Sub-index 2, bit 8 to 15
10110b Sub-index 2, bit 16 to 23
10111b Sub-index 2, bit 24 to 31
11000b Sub-index 3, bit 0 to 7
11001b Sub-index 3, bit 8 to 15
11010b Sub-index 3, bit 16 to 23
11011b Sub-index 3, bit 24 to 31
11100b Sub-index 4, bit 0 to 7
11101b Sub-index 4, bit 8 to 15
11110b Sub-index 4, bit 16 to 23
11111b Sub-index 4, bit 24 to 31

Due to the binary coding of the data code, it is very 
easy to implement the algorithm for accessing the value  
of the identity object. Bit 3 and 4 are the sub-index  
number - 1, and bit 0 and 1 are the byte number of this 
sub-index. 

Table 1: 29-bit CAN-ID usage

Table 2: Data code correlation with 1018h

Two data code values are dedicated for the flow 
control of the process and are listed in Table 3.

Table 3: Flow control data code

Data code Name
00001b ReqUsedNodeId
00010b ActUsedNodeId

The data code ReqUsedNodeId is used to start  
a new process, whereby the data field contains 0. The 
resulting message with extended CAN ID 100h will trig-
ger all devices with a valid node-ID to respond with 
ActUsedNodeId and their own node-ID in the data field.  
Figure 1 shows the basic concept of asking the network  
for the node-IDs, which are already used in the  
network.

Negotiation process

The negotiation process is only performed by nodes with 
an invalid node-ID. All nodes with a valid node-ID are 
ignoring the messages with the most significant bit in the 
data code field set to one. If a device participating in the 
procedure, receives a negotiation message, it compares 
the value according to Table 2 with its own equivalent. In 
case the received value is higher than its own value, the 
device continues the negotiation.

In case the received value is smaller as its own equiv-
alent, the negotiation is stopped on this device. And, the 
device has to wait until the running negotiation is done. 
It can detect this by setting a timeout (e.g. 100 ms), and 
restart this timeout every time it receives a negotiation 
message. In case a device is able to transmit all 16 mes-
sages, which are needed to transmit all 128 bits of the iden-
tity object, it will then announce the preferred node-ID to 
the network by using ActUsedNodeId data code message.

Figure 2 shows a complete negotiation cycle with a 
timeout value of 100 ms before and after the actual nego-
tiation and an additional 5-ms delay between every nego-
tiation message.

Node-ID conflicts

In case a device success-
fully negotiated a node-ID, 
but another device indicates 
by the ActUsedNodeId mes-
sage the very same node-ID, 
the receiving device sends 
out the same ActUsedNo-
deId, sets its pending node-
ID to the invalid node-ID, and 
enters the NMT state reset 
communication. Because the 
other device received this 
message, it loses its node-
ID too. Both devices can restart the negotiation process 
again. The losing device of this negotiation shall alter the 
preferred node-ID for the next cycle to a node-ID not yet 
present in the system.

Figure 1: Initializing 
negotiation (Source: 
Emotas) C

AN
op

en



34 CAN Newsletter 3/2021

Time (s) CAN-ID ide l d
0,000000 256d / 100h EXT 0 –
0,105000 4121d / 1019h EXT 0 –
0,106000 4121d / 1019h EXT 0 –
0,110000 4355d / 1103h EXT 0 –
0,111000 4355d / 1103h EXT 0 –
0,115000 4608d / 1200h EXT 0 –
0,115000 4608d / 1200h EXT 0 –
0,119000 4864d / 1300h EXT 0 –
0,121000 4864d / 1300h EXT 0 –
0,125000 5375d / 14FFh EXT 0 –
0,126000 5375d / 14FFh EXT 0 –
0,130000 5614d / 15EEh EXT 0 –
0,130000 5614d / 15EEh EXT 0 –
0,135000 5717d / 1655h EXT 0 –
0,136000 5717d / 1655h EXT 0 –
0,140000 6058d / 17AAh EXT 0 –
0,141000 6058d / 17AAh EXT 0 –
0,145000 6383d / 18EFh EXT 0 –
0,146000 6383d / 18EFh EXT 0 –
0,149000 6590d / 19BEh EXT 0 –
0,155000 6829d / 1AADh EXT 0 –
0,161000 7134d / 1BDEh EXT 0 –
0,165000 7201d / 1C21h EXT 0 –
0,170000 7491d / 1D43h EXT 0 –
0,174000 7781d / 1E65h EXT 0 –
0,181000 8071d / 1F87h EXT 0 –
0,279000 576d / 240h EXT 0 –
0,280000 1856d / 740h – 1 00h

0,282000 256d / 100h EXT 0 –
0,283000 576d / 240h EXT 0 –
0,387000 4121d / 1019h EXT 0 –
0,392000 4355d / 1103h EXT 0 –
0,397000 4608d / 1200h EXT 0 –
0,402000 4864d / 1300h EXT 0 –
0,406000 5375d / 14FFh EXT 0 –
0,412000 5614d / 15EEh EXT 0 –

Time (s) CAN-ID ide l d
0,417000 5717d / 1655h EXT 0 –
0,422000 6058d / 17AAh EXT 0 –
0,426000 6383d / 18EFh EXT 0 –
0,432000 6590d / 19BEh EXT 0 –
0,437000 6829d / 1AADh EXT 0 –
0,442000 7134d / 1BDEh EXT 0 –
0,447000 7423d / 1CFFh EXT 0 –
0,451000 7491d / 1D43h EXT 0 –
0,456000 7781d / 1E65h EXT 0 –
0,462000 8071d / 1F87h EXT 0 –
0,561000 577d / 241h EXT 0 –
0,562000 1857d / 741h – 1 00h

1,280000 1856d / 740h – 1 7Fh

1,562000 1857d / 741h – 1 7Fh

Table 4 shows a CAN Trace simulation example of two 
nodes negotiating their node-IDs. The difference in the 1018h 
parameter revision number causes the one node to stop the 
negotiation and to restart again after the first one is ready.

The main goal is still to find a reliable, robust, and 
fast solution to assign node-IDs in plug-and-play systems 
to extend the network during its lifecycle. This theoretical 
approach should only be a basis for discussion on how to 
achieve this. With the discussed process it is possible to 
assign node-IDs to devices without the need of a dedicated 
LSS manager. The usage of extended CAN-IDs makes it pos-
sible that only 16 messages are needed, and that the process 
does not create CAN network collisions.                                 t

Figure 2: Complete negotiation cycle (Source: Emotas)

C
AN

op
en

Author

Alexander Philipp
Emotas Embedded Communication
phi@emotas.de
www.emotas.de

Table 4: CAN Trace simulation example (Source: Emotas)

mailto:phi@emotas.de
http://www.emotas.de/



